An R package to analyse LC/MS metabolomic data: MAIT (Metabolite Automatic Identification Toolkit)

Summary: Current tools for liquid chromatography and mass spectrometry for metabolomic data cover a limited number of processing steps, whereas online tools are hard to use in a programmable fashion. This article introduces the Metabolite Automatic Identification Toolkit (MAIT) package, which makes it possible for users to perform metabolomic end-to-end liquid chromatography and mass spectrometry data analysis. MAIT is focused on improving the peak annotation stage and provides essential tools to validate statistical analysis results. MAIT generates output files with the statistical results, peak annotation and metabolite identification. Availability and implementation: http://b2slab.upc.edu/software-and-downloads/metabolite-automatic-identification-toolkit/. Contact: francesc.fernandez.albert@upc.edu Supplementary information: Supplementary data are available at Bioinformatics online

[1]  E. Want,et al.  Liquid chromatography-mass spectrometry based global metabolite profiling: a review. , 2012, Analytica chimica acta.

[2]  Rainer Breitling,et al.  Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data , 2006, Metabolomics.

[3]  R. Abagyan,et al.  XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. , 2006, Analytical chemistry.

[4]  Steffen Neumann,et al.  LC-MS Peak Annotation and Identification with CAMERA , 2009 .

[5]  S. Neumann,et al.  CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. , 2012, Analytical chemistry.

[6]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[7]  David S. Wishart,et al.  MetaboAnalyst: a web server for metabolomic data analysis and interpretation , 2009, Nucleic Acids Res..

[8]  R. Breitling,et al.  PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. , 2011, Analytical chemistry.

[9]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[10]  Marta Díaz,et al.  AStream: an R package for annotating LC/MS metabolomic data , 2011, Bioinform..

[11]  Douglas B. Kell,et al.  Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets , 2011, Bioinform..

[12]  David S. Wishart,et al.  HMDB: a knowledgebase for the human metabolome , 2008, Nucleic Acids Res..

[13]  Matej Oresic,et al.  MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data , 2006, Bioinform..

[14]  A. Saghatelian,et al.  Assignment of endogenous substrates to enzymes by global metabolite profiling. , 2004, Biochemistry.