Relativistic ground state of diatomic molecules from the numerical solution of the Dirac equation on parallel computers
暂无分享,去创建一个
André D. Bandrauk | François Fillion-Gourdeau | Emmanuel Lorin de la Grandmaison | A. Bandrauk | F. Fillion-Gourdeau | Emmanuel Lorin de la Grandmaison
[1] Mark Burgess,et al. Inter-Domain Management , 2007 .
[2] Michel C. Delfour,et al. High-Dimensional Partial Differential Equations in Science and Engineering , 2007 .
[3] D. Kolb,et al. Two-spinor fully relativistic finite-element (FEM) solution of the two-center Coulomb problem , 2004 .
[4] P. Indelicato,et al. Finite basis set approach to the two-centre Dirac problem in Cassini coordinates , 2010 .
[5] R. Stacey,et al. Eliminating lattice fermion doubling , 1982 .
[6] P. Pyykkö,et al. Two-dimensional, fully numerical solutions of second-order Dirac equations for diatomic molecules. part 3 , 1987 .
[7] S. N. Datta. Variational stability in dirac-hartree-fock theory , 1980 .
[8] F. Martín,et al. Applications of B-splines in atomic and molecular physics , 2001 .
[9] An analytical proof of Hardy-like inequalities related to the Dirac operator ? , 2003, math-ph/0309065.
[10] Jean Dolbeault,et al. On the eigenvalues of operators with gaps. Application to Dirac operators. , 2000, 2206.06327.
[11] Jean Dolbeault,et al. A variational method for relativistic computations in atomic and molecular physics , 2003 .
[12] W. Greiner,et al. The Dirac equation in orthogonal coordinate systems. I. The local representation , 1983 .
[13] Andreas Stathopoulos,et al. PRIMME: preconditioned iterative multimethod eigensolver—methods and software description , 2010, TOMS.
[14] J. Dolbeault,et al. Minimization methods for the one-particle dirac equation. , 2000, Physical review letters.
[15] J. Dolbeault,et al. Variational characterization for eigenvalues of Dirac operators , 2000 .