De-Conflated Semantic Representations

One major deficiency of most semantic representation techniques is that they usually model a word type as a single point in the semantic space, hence conflating all the meanings that the word can have. Addressing this issue by learning distinct representations for individual meanings of words has been the subject of several research studies in the past few years. However, the generated sense representations are either not linked to any sense inventory or are unreliable for infrequent word senses. We propose a technique that tackles these problems by de-conflating the representations of words based on the deep knowledge it derives from a semantic network. Our approach provides multiple advantages in comparison to the past work, including its high coverage and the ability to generate accurate representations even for infrequent word senses. We carry out evaluations on six datasets across two semantic similarity tasks and report state-of-the-art results on most of them.

[1]  Mark Dredze,et al.  Improving Lexical Embeddings with Semantic Knowledge , 2014, ACL.

[2]  Simone Paolo Ponzetto,et al.  BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network , 2012, Artif. Intell..

[3]  Andrew Y. Ng,et al.  Improving Word Representations via Global Context and Multiple Word Prototypes , 2012, ACL.

[4]  Chris Callison-Burch,et al.  PPDB: The Paraphrase Database , 2013, NAACL.

[5]  Eneko Agirre,et al.  WikiWalk: Random walks on Wikipedia for Semantic Relatedness , 2009, Graph-based Methods for Natural Language Processing.

[6]  Andrew McCallum,et al.  Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space , 2014, EMNLP.

[7]  Chris Dyer,et al.  Ontologically Grounded Multi-sense Representation Learning for Semantic Vector Space Models , 2015, NAACL.

[8]  David M. W. Powers,et al.  Measuring Semantic Similarity in the Taxonomy of WordNet , 2005, ACSC.

[9]  Noah A. Smith,et al.  Semi-Supervised Frame-Semantic Parsing for Unknown Predicates , 2011, ACL.

[10]  Elia Bruni,et al.  Multimodal Distributional Semantics , 2014, J. Artif. Intell. Res..

[11]  Claire Cardie,et al.  SimCompass: Using Deep Learning Word Embeddings to Assess Cross-level Similarity , 2014, *SEMEVAL.

[12]  Roberto Navigli,et al.  From senses to texts: An all-in-one graph-based approach for measuring semantic similarity , 2015, Artif. Intell..

[13]  Barbara L. Welther,et al.  The impact , 1995 .

[14]  John B. Goodenough,et al.  Contextual correlates of synonymy , 1965, CACM.

[15]  Eneko Agirre,et al.  Evaluating and optimizing the parameters of an unsupervised graph-based WSD algorithm , 2006 .

[16]  Zhiyuan Liu,et al.  A Unified Model for Word Sense Representation and Disambiguation , 2014, EMNLP.

[17]  Enhong Chen,et al.  A Probabilistic Model for Learning Multi-Prototype Word Embeddings , 2014, COLING.

[18]  Hinrich Schütze,et al.  AutoExtend: Extending Word Embeddings to Embeddings for Synsets and Lexemes , 2015, ACL.

[19]  Timothy W. Finin,et al.  Meerkat Mafia: Multilingual and Cross-Level Semantic Textual Similarity Systems , 2014, SemEval@COLING.

[20]  Zhiyuan Liu,et al.  Topical Word Embeddings , 2015, AAAI.

[21]  Mark Sanderson,et al.  The impact on retrieval effectiveness of skewed frequency distributions , 1999, TOIS.

[22]  Stefan Evert,et al.  SemantiKLUE: Robust Semantic Similarity at Multiple Levels Using Maximum Weight Matching , 2014, *SEMEVAL.

[23]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[24]  Roberto Navigli,et al.  Nasari: Integrating explicit knowledge and corpus statistics for a multilingual representation of concepts and entities , 2016, Artif. Intell..

[25]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[26]  Raymond J. Mooney,et al.  Multi-Prototype Vector-Space Models of Word Meaning , 2010, NAACL.

[27]  Iryna Gurevych,et al.  The People’s Web meets Linguistic Knowledge: Automatic Sense Alignment of Wikipedia and WordNet , 2011, IWCS.

[28]  Ignacio Iacobacci,et al.  SensEmbed: Learning Sense Embeddings for Word and Relational Similarity , 2015, ACL.

[29]  Felix Hill,et al.  SimLex-999: Evaluating Semantic Models With (Genuine) Similarity Estimation , 2014, CL.

[30]  Alessandro Lenci,et al.  Distributional Memory: A General Framework for Corpus-Based Semantics , 2010, CL.

[31]  Xiaojin Zhu,et al.  Semi-Supervised Learning , 2010, Encyclopedia of Machine Learning.

[32]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[33]  Katrin Erk,et al.  Word Sense Clustering and Clusterability , 2016, CL.

[34]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[35]  Roberto Navigli,et al.  SemEval-2014 Task 3: Cross-Level Semantic Similarity , 2014, *SEMEVAL.

[36]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[37]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[38]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[39]  Roberto Navigli,et al.  NASARI: a Novel Approach to a Semantically-Aware Representation of Items , 2015, NAACL.