Anisotropic goal‐oriented error analysis for a third‐order accurate CENO Euler discretization

In this paper, a central essentially non‐oscillatory approximation based on a quadratic polynomial reconstruction is considered for solving the unsteady 2D Euler equations. The scheme is third‐order accurate on irregular unstructured meshes. The paper concentrates on a method for a metric‐based goal‐oriented mesh adaptation. For this purpose, an a priori error analysis for this central essentially non‐oscillatory scheme is proposed. It allows us to get an estimate depending on the polynomial reconstruction error. As a third‐order error is not naturally expressed in terms of a metric, we propose a least‐square method to approach a third‐order error by a quadratic term. Then an optimization problem for the best mesh metric is obtained and analytically solved. The resulting mesh optimality system is discretized and solved using a global unsteady fixed‐point algorithm. The method is applied to an acoustic propagation benchmark.

[1]  Alain Dervieux,et al.  Anisotropic norm-oriented mesh adaptation for a Poisson problem , 2016, J. Comput. Phys..

[2]  Clinton P. T. Groth,et al.  A High-Order Central ENO Finite-Volume Scheme for Three-Dimensional Low-Speed Viscous Flows on Unstructured Mesh , 2015 .

[3]  Frédéric Alauzet,et al.  Anisotropic Norm-Oriented Mesh Adaptation for Compressible Flows , 2015 .

[4]  Estelle Mbinky,et al.  Adaptation de maillages pour des schémas numériques d'ordre très élevé. (Mesh adaptation for very high order numerical schemes) , 2013 .

[5]  Alexandre Carabias,et al.  Analyse et adaptation de maillage pour des schémas non-oscillatoires d'ordre élevé. (Analysis and mesh adaptation for high order non-oscillatory schemes) , 2013 .

[6]  Frédéric Alauzet,et al.  Time accurate anisotropic goal-oriented mesh adaptation for unsteady flows , 2012, J. Comput. Phys..

[7]  Clinton P. T. Groth,et al.  High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows , 2011, J. Comput. Phys..

[8]  Frédéric Alauzet,et al.  Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations , 2010, J. Comput. Phys..

[9]  J. Mirebeau Optimal Meshes for Finite Elements of Arbitrary Order , 2010, 1101.0612.

[10]  Weiming Cao,et al.  An Interpolation Error Estimate on Anisotropic Meshes in Rn and Optimal Metrics for Mesh Refinement , 2007, SIAM J. Numer. Anal..

[11]  Clinton P. T. Groth,et al.  High-Order Central ENO Finite-Volume Scheme with Adaptive Mesh Refinement , 2007 .

[12]  Frédéric Alauzet,et al.  Achievement of Global Second Order Mesh Convergence for Discontinuous Flows with Adapted Unstructured Meshes , 2007 .

[13]  Paul-Louis George,et al.  3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations , 2007, J. Comput. Phys..

[14]  Rémi Abgrall,et al.  Residual distribution schemes: Current status and future trends , 2006 .

[15]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[16]  Mark S. Shephard,et al.  3D anisotropic mesh adaptation by mesh modification , 2005 .

[17]  C. Gruau,et al.  3D tetrahedral, unstructured and anisotropic mesh generation with adaptation to natural and multidomain metric , 2005 .

[18]  Weizhang Huang,et al.  Metric tensors for anisotropic mesh generation , 2005 .

[19]  Youssef Belhamadia,et al.  Three-dimensional anisotropic mesh adaptation for phase change problems , 2004 .

[20]  L. Formaggia,et al.  Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .

[21]  Carlo L. Bottasso,et al.  Anisotropic mesh adaption by metric‐driven optimization , 2004 .

[22]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[23]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[24]  Bernardo Cockburn,et al.  Devising discontinuous Galerkin methods for non-linear hyperbolic conversation laws , 2001 .

[25]  D. Ait-Ali-Yahia,et al.  Anisotropic mesh adaptation for 3D flows on structured and unstructured grids , 2000 .

[26]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[27]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[28]  Michel Fortin,et al.  Anisotropic mesh adaptation - Towards a solver and user independent CFD , 1997 .

[29]  Frédéric Hecht,et al.  Mesh adaption by metric control for multi-scale phenomena and turbulence , 1997 .

[30]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[31]  Rémi Abgrall,et al.  Design of an Essentially Nonoscillatory Reconstruction Procedure on Finite-Element-Type Meshes , 1991 .

[32]  A. Harten,et al.  Multi-Dimensional ENO Schemes for General Geometries , 1991 .

[33]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[34]  D. Marcum,et al.  Alignement and orthogonality in anisotropic metric-based mesh adaptation , 2014 .

[35]  Frédéric Alauzet,et al.  Anisotropic Goal-Oriented Mesh Adaptation for Unsteady Viscous Compressible Flows , 2012 .

[36]  F. Alauzet,et al.  Higher-order interpolation for mesh adaptation , 2012 .

[37]  David Pardo,et al.  Anisotropic 2D mesh adaptation in hp-adaptive FEM , 2011, ICCS.

[38]  Frédéric Alauzet,et al.  Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error , 2011, SIAM J. Numer. Anal..

[39]  Anca Belme,et al.  Aérodynamique instationnaire et méthode adjointe , 2011 .

[40]  A. Dervieux,et al.  FULLY ANISOTROPIC GOAL-ORIENTED MESH ADAPTATION FOR UNSTEADY FLOWS , 2010 .

[41]  Alain Dervieux,et al.  Advective vertex-centered Reconstruction Scheme on unstructured Meshes , 2009 .

[42]  Weiming Cao,et al.  An interpolation error estimate in &Ropf2 based on the anisotropic measures of higher order derivatives , 2008, Math. Comput..

[43]  Weiming Cao,et al.  On the Error of Linear Interpolation and the Orientation, Aspect Ratio, and Internal Angles of a Triangle , 2005, SIAM J. Numer. Anal..

[44]  Mats G. Larson,et al.  A posteriori eror estimation for higher order Godunov finite volume methods on unstructured meshes , 2002 .

[45]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[46]  Thomas Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[47]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[48]  Rémi Abgrall,et al.  Eno schemes on unstructured meshes , 1993 .

[49]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[50]  P. G. Ciarlet,et al.  General lagrange and hermite interpolation in Rn with applications to finite element methods , 1972 .