Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling

In bacteria, the initiation of replication is controlled by DnaA, a member of the ATPases associated with various cellular activities (AAA+) protein superfamily. ATP binding allows DnaA to transition from a monomeric state into a large oligomeric complex that remodels replication origins, triggers duplex melting and facilitates replisome assembly. The crystal structure of AMP-PCP–bound DnaA reveals a right-handed superhelix defined by specific protein-ATP interactions. The observed quaternary structure of DnaA, along with topology footprint assays, indicates that a right-handed DNA wrap is formed around the initiation nucleoprotein complex. This model clarifies how DnaA engages and unwinds bacterial origins and suggests that additional, regulatory AAA+ proteins engage DnaA at filament ends. Eukaryotic and archaeal initiators also have the structural elements that promote open-helix formation, indicating that a spiral, open-ring AAA+ assembly forms the core element of initiators in all domains of life.

[1]  Arthur Kornberg,et al.  The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites , 1984, Cell.

[2]  T. Baker,et al.  In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. , 1987, The Journal of biological chemistry.

[3]  Arthur Kornberg,et al.  A model for initiation at origins of DNA replication , 1988, Cell.

[4]  A. Kornberg,et al.  The dnaA initiator protein binds separate domains in the replication origin of Escherichia coli. , 1989, The Journal of biological chemistry.

[5]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[6]  V S Lamzin,et al.  Automated refinement of protein models. , 1993, Acta crystallographica. Section D, Biological crystallography.

[7]  J. Marszalek,et al.  DnaA protein directs the binding of DnaB protein in initiation of DNA replication in Escherichia coli. , 1994, The Journal of biological chemistry.

[8]  K. Carr,et al.  Domains of DnaA Protein Involved in Interaction with DnaB Protein, and in Unwinding the Escherichia coli Chromosomal Origin* , 1996, The Journal of Biological Chemistry.

[9]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[10]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[11]  K. Carr,et al.  Escherichia coli DnaA Protein , 1998, The Journal of Biological Chemistry.

[12]  W. Weis,et al.  Crystal Structure of the Hexamerization Domain of N-ethylmaleimide–Sensitive Fusion Protein , 1998, Cell.

[13]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[14]  A. Brünger,et al.  Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP , 1998, Nature Structural Biology.

[15]  M. O’Donnell,et al.  Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. , 1999, Molecular cell.

[16]  G Klebe,et al.  Improving macromolecular electrostatics calculations. , 1999, Protein engineering.

[17]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Maximum-likelihood Density Modification , 2022 .

[18]  S. Bell,et al.  ATPase switches controlling DNA replication initiation. , 2000, Current opinion in cell biology.

[19]  T. Katayama,et al.  DNA replication‐coupled inactivation of DnaA protein in vitro: a role for DnaA arginine‐334 of the AAA+ Box VIII motif in ATP hydrolysis , 2001, Molecular microbiology.

[20]  T. Katayama,et al.  Hda, a novel DnaA‐related protein, regulates the replication cycle in Escherichia coli , 2001, The EMBO journal.

[21]  J. Kuriyan,et al.  Crystal Structure of the Processivity Clamp Loader Gamma (γ) Complex of E. coli DNA Polymerase III , 2001, Cell.

[22]  C. Speck,et al.  Mechanism of origin unwinding: sequential binding of DnaA to double‐ and single‐stranded DNA , 2001, The EMBO journal.

[23]  R J Read,et al.  Pushing the boundaries of molecular replacement with maximum likelihood. , 2003, Acta crystallographica. Section D, Biological crystallography.

[24]  J. Kuriyan,et al.  Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. , 2001, Cell.

[25]  W. Messer The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. , 2002, FEMS microbiology reviews.

[26]  J. Berger,et al.  The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation , 2002, The EMBO journal.

[27]  M. O’Donnell,et al.  The DnaC helicase loader is a dual ATP/ADP switch protein , 2002, The EMBO journal.

[28]  B. Stillman,et al.  Functions of Sensor 1 and Sensor 2 Regions of Saccharomyces cerevisiae Cdc6p in Vivo and in Vitro * , 2002, The Journal of Biological Chemistry.

[29]  L. Esser,et al.  Crystal Structure of ClpA, an Hsp100 Chaperone and Regulator of ClpAP Protease* , 2002, The Journal of Biological Chemistry.

[30]  Z. Kelman,et al.  Archaea: an archetype for replication initiation studies?: an archetype for replication initiation studies? , 2003 .

[31]  R. Giraldo Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. , 2003, FEMS microbiology reviews.

[32]  O. Nureki,et al.  Structural basis of replication origin recognition by the DnaA protein. , 2003, Nucleic acids research.

[33]  Z. Kelman,et al.  Archaea: an archetype for replication initiation studies? , 2003, Molecular microbiology.

[34]  Seok-Yong Lee,et al.  Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. , 2003, Genes & development.

[35]  Tal Pupko,et al.  Structural Genomics , 2005 .

[36]  Detlef D. Leipe,et al.  Evolutionary history and higher order classification of AAA+ ATPases. , 2004, Journal of structural biology.

[37]  C. D. Hardy,et al.  Topological domain structure of the Escherichia coli chromosome. , 2004, Genes & development.

[38]  M. Botchan,et al.  DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC–DNA binding , 2004, The EMBO journal.

[39]  John Kuriyan,et al.  Structural analysis of a eukaryotic sliding DNA clamp–clamp loader complex , 2004, Nature.

[40]  A. Leonard,et al.  Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  T. Katayama,et al.  Molecular mechanism of DNA replication‐coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp‐loaded DNA and the sliding clamp‐Hda complex , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[42]  S. Cebrat,et al.  Where does bacterial replication start? Rules for predicting the oriC region. , 2004, Nucleic acids research.

[43]  J. Kaguni,et al.  The Box VII Motif of Escherichia coli DnaA Protein Is Required for DnaA Oligomerization at the E. coli Replication Origin* , 2004, Journal of Biological Chemistry.

[44]  D. Gai,et al.  Mechanisms of Conformational Change for a Replicative Hexameric Helicase of SV40 Large Tumor Antigen , 2004, Cell.

[45]  A. Leonard,et al.  Building a bacterial orisome: emergence of new regulatory features for replication origin unwinding , 2004, Molecular microbiology.

[46]  L. Shapiro,et al.  The structure and function of the bacterial chromosome. , 2005, Current opinion in genetics & development.

[47]  T. Katayama,et al.  Formation of an ATP-DnaA-specific Initiation Complex Requires DnaA Arginine 285, a Conserved Motif in the AAA+ Protein Family* , 2005, Journal of Biological Chemistry.

[48]  J. Berger,et al.  Unraveling the early steps of prokaryotic replication. , 2005, Current opinion in structural biology.

[49]  T. Katayama,et al.  Protein Associations in DnaA-ATP Hydrolysis Mediated by the Hda-Replicase Clamp Complex* , 2005, Journal of Biological Chemistry.

[50]  S. Bell,et al.  Origins of DNA replication in the three domains of life , 2005, The FEBS journal.

[51]  J. Berger,et al.  Evolutionary relationships and structural mechanisms of AAA+ proteins. , 2006, Annual review of biophysics and biomolecular structure.

[52]  M. Botchan,et al.  Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex , 2006, Nature Structural &Molecular Biology.

[53]  M. Gossen,et al.  A structural role for ATP in the formation and stability of the human origin recognition complex. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. Bell,et al.  Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. , 2006, Molecular cell.