Calculation of the torque on dielectric elliptical cylinders.

We present our investigation of the torque exerted on dielectric elliptical cylinders by highly focused laser beams. The calculations are performed with rigorous diffraction theory, and the size-dependent torque is analyzed as a function of the axis ratio. It is found that highly elongated particles will experience a reversal of the torque for a radius that is approximately one third of the wavelength. This effect is attributed to interference effects inside the structure due to multiple reflections of the incoming wave. The evolution from a perfectly sinusoidal angular dependence of the torque to a more complicated pattern for increasing particle size is presented in detail.

[1]  Arthur Ashkin,et al.  Optical Levitation by Radiation Pressure , 1971 .

[2]  H. Rubinsztein-Dunlop,et al.  Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.

[3]  Halina Rubinsztein-Dunlop,et al.  Optically driven micromachine elements , 2001 .

[4]  D. Grier A revolution in optical manipulation , 2003, Nature.

[5]  R. Gauthier,et al.  Theoretical investigation of the optical trapping properties of a micro-optic cubic glass structure. , 2000, Applied optics.

[6]  G. Gréhan,et al.  Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam , 1998 .

[7]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[8]  Peter R. C. Gascoyne,et al.  General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method , 1997 .

[9]  M Nieto-Vesperinas,et al.  Optical forces on microparticles in an evanescent laser field. , 1999, Optics letters.

[10]  H. Rubinsztein-Dunlop,et al.  Orientation of biological cells using plane-polarized Gaussian beam optical tweezers , 2003, physics/0308105.

[11]  H. Herzig,et al.  Rigorous diffraction theory applied to the analysis of the optical force on elliptical nano- and micro-cylinders , 2004 .

[12]  H. Rubinsztein-Dunlop,et al.  Numerical modelling of optical trapping , 2001 .

[13]  Satoshi Kawata,et al.  Near-Field Scanning Optical Microscope with a Laser Trapped Probe , 1994 .

[14]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[15]  Christian Hafner,et al.  Post-modern Electromagnetics: Using Intelligent MaXwell Solvers , 1999 .

[16]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[17]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[18]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[19]  Philip L. Marston,et al.  Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave , 1984 .

[20]  C. Hafner The generalized multipole technique for computational electromagnetics , 1990 .

[21]  Pal Ormos,et al.  Orientation of flat particles in optical tweezers by linearly polarized light. , 2003, Optics express.

[22]  Miles J. Padgett,et al.  Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner , 2000 .

[23]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[24]  Ernst H. K. Stelzer,et al.  Photonic Force Microscopy: simulation of principles and applications , 2001, European Conference on Biomedical Optics.

[25]  Arthur Ashkin,et al.  Optical Trapping and Manipulation of Neutral Particles Using Lasers , 1999 .

[26]  M E Friese,et al.  Optical torque controlled by elliptical polarization. , 1998, Optics letters.

[27]  H. Rubinsztein-Dunlop,et al.  Optical measurement of microscopic torques , 2003 .