Skp2-mediated MLKL degradation confers cisplatin-resistant in non-small cell lung cancer cells

[1]  Hongzhou Gu,et al.  A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance , 2022, Nature Communications.

[2]  Y. Lou,et al.  Immunotherapy in Non-Small Cell Lung Cancer With Actionable Mutations Other Than EGFR , 2021, Frontiers in Oncology.

[3]  Laura F. Dagley,et al.  Oligomerization‐driven MLKL ubiquitylation antagonizes necroptosis , 2021, The EMBO journal.

[4]  Sjoerd J. L. van Wijk,et al.  The Smac mimetic BV6 cooperates with STING to induce necroptosis in apoptosis-resistant pancreatic carcinoma cells , 2021, Cell Death & Disease.

[5]  J. Bertin,et al.  Ubiquitylation of MLKL at lysine 219 positively regulates necroptosis-induced tissue injury and pathogen clearance , 2021, Nature Communications.

[6]  P. Jänne,et al.  Overcoming therapy resistance in EGFR-mutant lung cancer , 2021, Nature Cancer.

[7]  A. Jemal,et al.  Cancer Statistics, 2021 , 2021, CA: a cancer journal for clinicians.

[8]  Lijun Liu,et al.  RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage , 2020, Molecular and cellular biochemistry.

[9]  R. Deng,et al.  Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation , 2020, Nature Communications.

[10]  E. Lee,et al.  Expression of key regulatory genes in necroptosis and its effect on the prognosis in non-small cell lung cancer , 2020, Journal of Cancer.

[11]  Victoria E. Jackson,et al.  A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction , 2020, Nature Communications.

[12]  Wenbin Liu,et al.  Deguelin suppresses non-small cell lung cancer by inhibiting EGFR signaling and promoting GSK3β/FBW7-mediated Mcl-1 destabilization , 2020, Cell Death & Disease.

[13]  Zhangfeng Zhong,et al.  ID1 overexpression increases gefitinib sensitivity in non-small cell lung cancer by activating RIP3/MLKL-dependent necroptosis. , 2020, Cancer letters.

[14]  Wei Li,et al.  Targeting UBE4A Revives Viperin Protein in Epithelium to Enhance Host Antiviral Defense. , 2019, Molecular cell.

[15]  Li Zhou,et al.  Skp2-mediated ubiquitination and mitochondrial localization of Akt drive tumor growth and chemoresistance to cisplatin , 2019, Oncogene.

[16]  Junying Yuan,et al.  TAM Kinases Promote Necroptosis by Regulating Oligomerization of MLKL. , 2019, Molecular cell.

[17]  Jinbao Liu,et al.  USP10 modulates the SKP2/Bcr-Abl axis via stabilizing SKP2 in chronic myeloid leukemia , 2019, Cell Discovery.

[18]  S. Fulda,et al.  Interferons Transcriptionally Up-Regulate MLKL Expression in Cancer Cells1 , 2018, Neoplasia.

[19]  Won Kyung Kim,et al.  A novel selenonucleoside suppresses tumor growth by targeting Skp2 degradation in paclitaxel‐resistant prostate cancer , 2018, Biochemical pharmacology.

[20]  J. Morrow,et al.  The critical role of AMPK in driving Akt activation under stress, tumorigenesis and drug resistance , 2018, Nature Communications.

[21]  Lijun Liu,et al.  Deguelin attenuates non-small cell lung cancer cell metastasis through inhibiting the CtsZ/FAK signaling pathway. , 2018, Cellular signalling.

[22]  Lijun Liu,et al.  Repression of Noxa by Bmi1 contributes to deguelin‐induced apoptosis in non‐small cell lung cancer cells , 2018, Journal of cellular and molecular medicine.

[23]  Dorte B. Bekker-Jensen,et al.  UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites , 2018, Nature Structural & Molecular Biology.

[24]  Li Ma,et al.  SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity , 2018, Nature Communications.

[25]  Roy S. Herbst,et al.  The biology and management of non-small cell lung cancer , 2018, Nature.

[26]  Pei Zhang,et al.  Association of Mixed Lineage Kinase Domain-Like Protein Expression With Prognosis in Patients With Colon Cancer , 2017, Technology in cancer research & treatment.

[27]  Chien-Feng Li,et al.  Skp2 deficiency restricts the progression and stem cell features of castration-resistant prostate cancer by destabilizing Twist , 2017, Oncogene.

[28]  D. Green,et al.  Necroptosis in development, inflammation and disease , 2016, Nature Reviews Molecular Cell Biology.

[29]  M van Duin,et al.  Pharmacogenomics and chemical library screens reveal a novel SCFSKP2 inhibitor that overcomes Bortezomib resistance in multiple myeloma , 2016, Leukemia.

[30]  S. Fulda,et al.  Smac mimetic triggers necroptosis in pancreatic carcinoma cells when caspase activation is blocked. , 2016, Cancer letters.

[31]  F. Paris,et al.  Krüppel-like factor 4: A new potential biomarker of lung cancer , 2016, Molecular and clinical oncology.

[32]  D. Adam,et al.  Cancer and necroptosis: friend or foe? , 2016, Cellular and Molecular Life Sciences.

[33]  Wen-yan He,et al.  Necrosome core machinery: MLKL , 2016, Cellular and Molecular Life Sciences.

[34]  Yi-Fan Lian,et al.  Skp2 is required for Aurora B activation in cell mitosis and spindle checkpoint , 2015, Cell cycle.

[35]  F. Tsai,et al.  Skp2-Mediated RagA Ubiquitination Elicits a Negative Feedback to Prevent Amino-Acid-Dependent mTORC1 Hyperactivation by Recruiting GATOR1. , 2015, Molecular cell.

[36]  Y. Zeng,et al.  Skp2-MacroH2A1-CDK8 axis orchestrates G2/M transition, polyploidy and tumourigenesis , 2015, Nature Communications.

[37]  Chien-Feng Li,et al.  Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress. , 2015, Molecular cell.

[38]  Maryam Rashidi,et al.  RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL , 2015, Nature Communications.

[39]  Zhiwei Wang,et al.  Roles of F-box proteins in cancer , 2014, Nature Reviews Cancer.

[40]  C. Chen,et al.  Acquisition of epithelial–mesenchymal transition is associated with Skp2 expression in paclitaxel-resistant breast cancer cells , 2014, British Journal of Cancer.

[41]  Xinqi Gong,et al.  Structural insights into RIP3-mediated necroptotic signaling. , 2013, Cell reports.

[42]  Toru Okamoto,et al.  The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. , 2013, Immunity.

[43]  W. Curran,et al.  Pronecrotic mixed lineage kinase domain‐like protein expression is a prognostic biomarker in patients with early‐stage resected pancreatic adenocarcinoma , 2013, Cancer.

[44]  M. Hung,et al.  Pharmacological Inactivation of Skp2 SCF Ubiquitin Ligase Restricts Cancer Stem Cell Traits and Cancer Progression , 2013, Cell.

[45]  Xuedong Liu,et al.  High-Throughput Screening AlphaScreen Assay for Identification of Small-Molecule Inhibitors of Ubiquitin E3 Ligase SCFSkp2-Cks1 , 2013, Journal of biomolecular screening.

[46]  S. Gygi,et al.  Acetylation-Dependent Regulation of Skp2 Function , 2012, Cell.

[47]  J. Hazle,et al.  The Skp2-SCF E3 Ligase Regulates Akt Ubiquitination, Glycolysis, Herceptin Sensitivity, and Tumorigenesis , 2012, Cell.

[48]  K. Khanna,et al.  Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1. , 2012, Molecular cell.

[49]  Xiaodong Wang,et al.  Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase , 2012, Cell.

[50]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[51]  G. Roth,et al.  Chemical genetics approach to restoring p27Kip1 reveals novel compounds with antiproliferative activity in prostate cancer cells , 2010, BMC Biology.

[52]  G. Li,et al.  The tumor suppressor ING3 is degraded by SCFSkp2-mediated ubiquitin–proteasome system , 2010, Oncogene.

[53]  John Rush,et al.  Quantitative Proteomics Reveals the Function of Unconventional Ubiquitin Chains in Proteasomal Degradation , 2009, Cell.

[54]  M. Mann,et al.  Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. , 2008, Molecular cell.

[55]  S. Elledge,et al.  A quantitative atlas of mitotic phosphorylation , 2008, Proceedings of the National Academy of Sciences.

[56]  O. Ben‐Izhak,et al.  Over-expression of Skp2 is associated with resistance to preoperative doxorubicin-based chemotherapy in primary breast cancer , 2008, Breast Cancer Research.

[57]  M. Pagano,et al.  Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer , 2008, Nature Reviews Cancer.

[58]  K. Nakayama,et al.  Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin-mediated degradation at the G1–S transition , 2008, Oncogene.

[59]  K. Nakayama,et al.  Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. , 2008, Blood.

[60]  D. Tindall,et al.  Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  K. Nakayama,et al.  Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  M. Kitagawa,et al.  Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication , 2000, The EMBO journal.

[63]  Michele Pagano,et al.  SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27 , 1999, Nature Cell Biology.

[64]  J. Gervais,et al.  Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.