Semiempirical MO methods: the middle ground in molecular modeling

Abstract Semiempirical methods occupy an important middle ground between molecular mechanics and ab initio MO calculations in the repertoire of methods available for studying the structures, properties and reactions of molecules. They have a unique combination of speed and generality which makes it possible to study many chemical systems which are beyond the reach of classical force fields and too large for ab initio MO methods. Indeed, semiempirical calculations are often the first computational technique to be applied to a chemical problem. Three examples where semiempirical MO calculations have provided significant mechanistic insight are the cylcopropylcarbinyl cation, porphyrin structure and dynamics, and the role of CH hydrogen bonds in polymer miscibility. In each case Semiempirical calculations have been at the fore, and their results have been generally confirmed by subsequent ab initio calculations and experiment.

[1]  W. Koch,et al.  The C4H7+ cation. A theoretical investigation. , 1988, Journal of the American Chemical Society.

[2]  J. R. Damewood,et al.  Interaction of formaldehyde with water , 1989 .

[3]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[4]  Z. Derewenda,et al.  The occurrence of C-H...O hydrogen bonds in proteins. , 1995, Journal of molecular biology.

[5]  S. L. Dixon,et al.  Semiempirical molecular orbital calculations with linear system size scaling , 1996 .

[6]  J. Hennig,et al.  IR‐spectroscopic study of isotope effects on the NH/ND‐stretching bands of meso‐tetraphenylporphine and vibrational hydrogen tunneling , 1983 .

[7]  James J. P. Stewart,et al.  Application of localized molecular orbitals to the solution of semiempirical self‐consistent field equations , 1996 .

[8]  H. Rumpel,et al.  Investigation of the Tautomerism of 15N‐Labeled Hydroporphyrins by Dynamic NMR Spectroscopy , 1989 .

[9]  P. G. Gassman,et al.  Electron correlation in tetrapyrroles. Ab initio calculations on porphyrin and the tautomers of chlorin , 1993 .

[10]  W. Hehre,et al.  Structure of C4H7 , 1979 .

[11]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[12]  M. Shaw,et al.  Polymer-Polymer Miscibility , 1979 .

[13]  K. Jug,et al.  Structure and aromaticity of 14-annulene and 18-annulene , 1987 .

[14]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[15]  P. Painter,et al.  Hydrogen bonding in polymer blends. 2. Theory , 1988 .

[16]  Uwe Koch,et al.  CHARACTERIZATION OF C-H-O HYDROGEN-BONDS ON THE BASIS OF THE CHARGE-DENSITY , 1995 .

[17]  J. Dannenberg,et al.  Molecular orbital studies of the nitromethane-ammonia complex. An unusually strong C-H⋯N hydrogen bond , 1995 .

[18]  David J. Giesen,et al.  Class IV charge models: A new semiempirical approach in quantum chemistry , 1995, J. Comput. Aided Mol. Des..

[19]  C. Moore,et al.  Hydrogen atom tunneling in the thermal tautomerism of porphine imbedded in a n-hexane matrix , 1988 .

[20]  R. Chuck,et al.  Vibrational photochemistry of porphine imbedded in a n-hexane-d14 Shpol'skii matrix , 1990 .

[21]  K. Wiberg,et al.  Structures, energies, and modes of interconversion of C4H7+ ions , 1988 .

[22]  C. Reynolds Methyl chloride-formic acid van der Waals complex: a model for carbon as a hydrogen bond donor , 1990 .

[23]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[24]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[25]  D. R. Paul,et al.  Evaluation of interactions in blends of ethylene-vinyl acetate copolymers with poly(vinyl chloride) using model compounds , 1989 .

[26]  R. Jerome,et al.  Influence of the tacticity of poly(methyl methacrylate) on its miscibility with chlorinated polymers , 1988 .

[27]  K. Merz,et al.  Quantum Free Energy Perturbation Study within a PM3/MM Coupled Potential , 1995 .

[28]  George P. Ford,et al.  Atomic charges derived from a fast and accurate method for electrostatic potentials based on modified AM1 calculations , 1994, J. Comput. Chem..

[29]  C. Reynolds An AM1 theoretical study of the structure and electronic properties of porphyrin , 1988 .

[30]  Susan E. Barrows,et al.  Theoretical Characterization of Cycloaddition Reactions of the Cyclopropylcarbinyl Cation , 1994 .

[31]  M. Bowers Gas phase ion chemistry , 1979 .

[32]  F. Houle,et al.  Photoelectron spectroscopy of isomeric C4H7 radicals. Implications for the thermochemistry and structures of the radicals and their corresponding carbonium ions , 1984 .

[33]  Michael J. S. Dewar,et al.  The semiempirical approach to chemistry , 1992 .

[34]  Abhik Ghosh,et al.  STRUCTURE AND STABILITY OF CIS-PORPHYRIN , 1995 .

[35]  Olga Kennard,et al.  Crystallographic evidence for the existence of CH.cntdot..cntdot..cntdot.O, CH.cntdot..cntdot..cntdot.N and CH.cntdot..cntdot..cntdot.Cl hydrogen bonds , 1982 .

[36]  A. Tulinsky,et al.  Redetermination of the structure of porphine. , 1972, Journal of the American Chemical Society.

[37]  Michael J. S. Dewar,et al.  Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method , 1975 .