Probing clumpy stellar winds with a neutron star

Context. INTEGRAL, the European Space Agency’s γ-ray observatory, tripled the number of super-giant high-mass X-ray binaries (sgHMXB) known in the Galaxy by revealing absorbed and fast transient (SFXT) systems. Aims. In these sources, quantitative constraints on the wind clumping of the massive stars could be obtained from the study of the hard X-ray variability of the compact accreting object. Methods. Hard X-ray flares and quiescent emission of SFXT systems have been characterized and used to derive wind clump parameters. Results. A large fraction of the hard X-ray emission is emitted in the form of flares with a typical duration of 3 ks, frequency of 7 days and luminosity of 10 36 erg/s. Such flares are most probably emitted by the interaction of a compact object orbiting at ∼10 R∗ with wind clumps (10 22−23 g) representing a large fraction of the stellar mass-loss rate. The density ratio between the clumps and the inter-clump medium is 10 2−4 in SFXT systems. Conclusions. The parameters of the clumps and of the inter-clump medium, derived from the SFXT flaring behavior, are in good agreement with macro-clumping scenario and line driven instability simulations. SFXT have probably a larger orbital radius than classical sgHMXB.

[1]  J. Pittard A Clumping-independent Diagnostic of Stellar Mass-Loss Rates: Rapid Clump Destruction in Adiabatic Colliding Winds , 2007, astro-ph/0703617.

[2]  L. Pellizza,et al.  IGR J17544-2619: a new supergiant fast X-ray transient revealed by optical/infrared observations , 2006, astro-ph/0605559.

[3]  R. Terrier,et al.  IGR J16393-4643: a new heavily-obscured X-ray pulsar , 2005, astro-ph/0510112.

[4]  W. Hamann,et al.  Neglecting the porosity of hot-star winds can lead to underestimating mass-loss rates , 2007, 0704.2390.

[5]  D. Cohen,et al.  The Effect of Porosity on X-Ray Emission-Line Profiles from Hot-Star Winds , 2006, astro-ph/0602054.

[6]  W. Waldron Corona-Warm Wind Model for the X-Ray Emission from Of Stars and OB Supergiants , 1981 .

[7]  A. Jorissen,et al.  Wind accretion in binary stars — II. Accretion rates , 1996, astro-ph/9602089.

[8]  J. Blondin,et al.  Enhanced winds and tidal streams in massive X-ray binaries , 1991 .

[9]  Sébastien Lépine,et al.  Wind Inhomogeneities in Wolf-Rayet Stars. II. Investigation of Emission-Line Profile Variations , 1999 .

[10]  M. Audard,et al.  Wind clumping and the wind-wind collision zone in the Wolf-Rayet binary gamma ² Velorum observations at high and low state. XMM-Newton observations at high and low state , 2004 .

[11]  K. Nordsieck,et al.  Visible and infrared continuum spectropolarimetric observations of ten OB supergiant and O emission-line stars , 1987 .

[12]  M. C. Runacres,et al.  A pseudo-planar, periodic-box formalism for modelling the outer evolution of structure in spherically expanding stellar winds , 2005 .

[13]  Achim Feldmeier,et al.  Clumping in hot-star winds , 2008 .

[14]  G. Cocco,et al.  INTEGRAL and XMM–Newton observations of the X-ray pulsar IGR J16320−4751/AX J1631.9−4752 , 2005, astro-ph/0511429.

[15]  R. Staubert,et al.  The INTEGRAL Science Data Centre (ISDC) , 2001, astro-ph/0308047.

[16]  John I. Castor,et al.  Radiation-driven winds in Of stars. , 1975 .

[17]  The 1–50 keV spectral and timing analysis of IGR J18027-2016: an eclipsing, high mass X-ray binary , 2005, astro-ph/0505078.

[18]  J.J.M. in 't Zand,et al.  Chandra observation of the fast X-ray transient IGR J17544-2619: evidence for a neutron star? , 2005, astro-ph/0508240.

[19]  P. Ubertini,et al.  Unveiling Supergiant Fast X-Ray Transient Sources with INTEGRAL , 2006, astro-ph/0603756.

[20]  Angela Bazzano,et al.  XMM-Newton and INTEGRAL observations of new absorbed supergiant high-mass X-ray binaries , 2006 .

[21]  Free‐fall accretion and emitting caustics in wind‐fed X‐ray sources , 2000, astro-ph/0006352.

[22]  C. B. Markwardt,et al.  XTE J1739–302 as a Supergiant Fast X-Ray Transient , 2005, astro-ph/0510658.

[23]  D. Hillier,et al.  Lower mass loss rates in O-type stars: Spectral signatures of dense clumps in the wind of two Galactic O4 stars , 2004, astro-ph/0412346.

[24]  D. Massa,et al.  The Discordance of Mass-Loss Estimates for Galactic O-Type Stars , 2005, astro-ph/0510252.

[25]  L. Kaper,et al.  XMM-Newton X-ray spectroscopy of the high-mass X-ray binary 4U 1700-37 at low flux , 2004, astro-ph/0412021.

[26]  J. Tomsick,et al.  Identifications of Four INTEGRAL Sources in the Galactic Plane via Chandra Localizations , 2006, astro-ph/0603810.

[27]  J. Vink,et al.  Modelling the clumping-induced polarimetric variability of hot star winds , 2007, 0704.2569.

[28]  B. Ramsey,et al.  IBIS: The Imager on-board INTEGRAL , 2003 .

[29]  Italy.,et al.  The soft X-ray counterpart of the newly discovered INTEGRAL source IGR J16195-4945 , 2004, astro-ph/0411610.

[30]  París,et al.  IGR J17252–3616: an accreting pulsar observed by INTEGRAL and XMM-Newton , 2005, Proceedings of the International Astronomical Union.

[31]  J. Brown,et al.  On the wavelength drift of spectral features from structured hot star winds , 2001 .

[32]  J. Rodriguez,et al.  Unveiling the nature of the high energy source IGR J19140+0951 , 2004, astro-ph/0412555.

[33]  L. M. Oskinova,et al.  High-resolution X-ray spectroscopy of bright O-type stars , 2006 .

[34]  W. Hermsen,et al.  A probable accretion-powered X-ray pulsar in IGR J00370+6122 , 2007 .

[35]  P. M. Williams,et al.  Bulk Velocities, Chemical Composition, and Ionization Structure of the X-Ray Shocks in WR 140 near Periastron as Revealed by the Chandra Gratings , 2005 .

[36]  J. Bieging,et al.  Mass loss from very luminous OB stars and the Cygnus superbubble , 1981 .

[37]  Bright OB stars in the Galaxy II. Wind variability in O supergiants as traced by Hα , 2005, astro-ph/0505613.

[38]  R. Prinja,et al.  Narrow absorption components and variability in ultraviolet P Cygni profiles of early-type stars , 1986 .

[39]  M. Audard,et al.  Wind clumping and the wind-wind collision zone in the Wolf-Rayet binary γ 2 Velorum ⋆ , 2004, astro-ph/0404610.

[40]  M. Rouger,et al.  ISGRI: The INTEGRAL soft gamma-ray imager , 2003, astro-ph/0310362.

[41]  J. Cassinelli,et al.  The effects of coronal regions on the X-ray flux and ionization conditions in the winds of OB supergiants and Of stars. , 1979 .

[42]  J. Blondin The shadow wind in high-mass X-ray binaries , 1994 .

[43]  G. Rybicki,et al.  Time-dependent models of radiatively driven stellar winds. I - Nonlinear evolution of instabilities for a pure absorption model , 1988 .

[44]  A search for counterparts to massive X-ray binaries using photometric catalogues ,⋆ , 2006, astro-ph/0610006.

[45]  I. Steele,et al.  Discovery of the optical counterpart to the ASCA transient AX 1845.0 — 0433 , 1996 .

[46]  G. Di Cocco,et al.  The INTEGRAL mission , 2003 .

[47]  R. Klein,et al.  Bondi Accretion in the Presence of Vorticity , 2004, astro-ph/0409454.

[48]  Nicolas Produit,et al.  Hard X-ray flares in IGR J08408-4503 unveil clumpy stellar winds , 2007, 0712.1200.

[49]  S. Mereghetti,et al.  IGR J11215–5952: a hard X-ray transient displaying recurrent outbursts , 2006, astro-ph/0603081.