On the Convexity of Paths of Length Two in Undirected Graphs

Abstract A subset S ⊆ V ( G ) of a graph G is p 2 convex when v , w ∈ S and z ∈ V ( G ) imply z ∈ S , whenever v, z, w is a path of G. If S = V ( G ) then S is a p 2 set of G. The size of the smallest p 2 set of G is the p 2 number of G, while the size of the largest proper p 2 convex set is the p 2 convexity number of G. On the other hand, for any given subset S of V ( G ) , the smallest convex set S h containing S is the p 2 hull set of S. If S h = V ( G ) then S h is a p 2 hull set of G. The size of the smallest p 2 hull set is the p 2 hull number of G. In this work, we prove the NP-hardness of the determination of p 2 number and p 2 convexity number of a graph, and describe polynomial time algorithms for trees, cographs and classes of grids.

[1]  M. Farber,et al.  Convexity in graphs and hypergraphs , 1986 .

[2]  Mustafa Atici,et al.  Computational Complexity of Geodetic Set , 2002, Int. J. Comput. Math..

[3]  Gary Chartrand,et al.  Convexity in oriented graphs , 2002, Discret. Appl. Math..

[4]  Jayme Luiz Szwarcfiter,et al.  Algorithmic Aspects of Monophonic Convexity , 2008, Electron. Notes Discret. Math..

[5]  Martin G. Everett,et al.  The hull number of a graph , 1985, Discret. Math..

[6]  John W. Moon,et al.  Embedding tournaments in simple tournaments , 1972, Discret. Math..

[7]  Jayme Luiz Szwarcfiter,et al.  On the computation of the hull number of a graph , 2009, Discret. Math..

[8]  E. C. Milner,et al.  Some remarks on simple tournaments , 1972 .

[9]  Pierre Duchet,et al.  Convex sets in graphs, II. Minimal path convexity , 1987, J. Comb. Theory B.

[10]  Marty J. Wolf,et al.  Convex independence and the structure of clone-free multipartite tournaments , 2009, Discuss. Math. Graph Theory.

[11]  Béla Bollobás The Art of Mathematics - Coffee Time in Memphis , 2006 .

[12]  Feodor F. Dragan,et al.  Convexity and HHD-Free Graphs , 1999, SIAM J. Discret. Math..

[13]  Alan A. Bertossi,et al.  Dominating Sets for Split and Bipartite Graphs , 1984, Inf. Process. Lett..

[14]  John Gimbel Some Remarks on the Convexity Number of a Graph , 2003, Graphs Comb..

[15]  Andreas Brandstädt,et al.  The NP-Completeness of Steiner Tree and Dominating Set for Chordal Bipartite Graphs , 1987, Theor. Comput. Sci..

[16]  J. Balogh,et al.  Random disease on the square grid , 1998 .

[17]  Manoj Changat,et al.  On triangle path convexity in graphs , 1999, Discret. Math..

[18]  V. Chepoi Separation of two convex sets in convexity structures , 1994 .

[19]  Frank Harary,et al.  Convexity in graphs , 1981 .