Controlled blueshift of the resonant wavelength in porous silicon microcavities using ion irradiation

High-energy focused proton beam irradiation has been used to controllably blueshift the resonant wavelength of porous silicon microcavities in heavily doped p-type wafers. Irradiation results in an increased resistivity, hence a locally reduced rate of anodization. Irradiated regions are consequently thinner and of a higher refractive index than unirradiated regions, and the microcavity blueshift arises from a net reduction in the optical thickness of each porous layer. Using this process wafers are patterned on a micrometer lateral scale with microcavities tuned to different resonant wavelengths, giving rise to high-resolution full-color reflection images over the full visible spectrum.

[1]  Kurt Busch,et al.  Silicon‐Based Photonic Crystals , 2001 .

[2]  Hans Lüth,et al.  Dielectric filters made of PS: advanced performance by oxidation and new layer structures , 1997 .

[3]  Neil Savage,et al.  Linking with light [high-speed optical interconnects] , 2002 .

[4]  Grégory Vincent,et al.  Optical properties of porous silicon superlattices , 1994 .

[5]  Andrew A. Bettiol,et al.  Three-dimensional microfabrication in bulk silicon using high-energy protons , 2004 .

[6]  Philippe M. Fauchet,et al.  Silicon microcavity light emitting devices , 2001 .

[7]  Z. Gaburro,et al.  Free-standing porous silicon single and multiple optical cavities , 2003 .

[8]  Volker Lehmann,et al.  Electrochemistry of Silicon , 2002 .

[9]  Huimin Ouyang,et al.  Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals. , 2005, Optics express.

[10]  Lorenzo Pavesi,et al.  Controlled photon emission in porous silicon microcavities , 1995 .

[11]  M. Breese,et al.  Controlled Shift in Emission Wavelength from Patterned Porous Silicon Using Focused Ion Beam Irradiation , 2005 .

[12]  Lorenzo Pavesi,et al.  Time-resolved photoluminescence of all-porous-silicon microcavities , 1997 .

[13]  Photonic band-gap guidance in high-porosity luminescent porous silicon , 2001 .

[14]  S. Ossicini,et al.  Porous silicon: a quantum sponge structure for silicon based optoelectronics , 2000 .

[15]  Lorenzo Pavesi,et al.  Application to optical components of dielectric porous silicon multilayers , 1995 .

[16]  Gilles Lerondel,et al.  Optical microcavities with subnanometer linewidths based on porous silicon , 2002 .

[17]  Andrew A. Bettiol,et al.  Multicolor Photoluminescence from Porous Silicon Using Focused, High‐Energy Helium Ions , 2006 .

[18]  Nobuyoshi Koshida,et al.  Controlled electroluminescence spectra of porous silicon diodes with a vertical optical cavity , 1996 .

[19]  Lorenzo Pavesi,et al.  Porous silicon dielectric multilayers and microcavities , 1997 .

[20]  David N. Jamieson,et al.  Materials Analysis Using a Nuclear Microprobe , 1996 .

[21]  Philippe M. Fauchet,et al.  Tunable, narrow, and directional luminescence from porous silicon light emitting devices , 1999 .

[22]  S. Nagata,et al.  Single-mode optical waveguide fabricated by oxidization of selectively doped titanium porous silicon , 1998 .

[23]  Andrew A. Bettiol,et al.  Controlled intensity emission from patterned porous silicon using focused proton beam irradiation , 2004 .

[24]  Pellegrini,et al.  Enhanced optical properties in porous silicon microcavities. , 1995, Physical review. B, Condensed matter.

[25]  Andrew A. Bettiol,et al.  Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization , 2006 .

[26]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .