Optimal Locally Repairable Codes of Distance 3 and 4 via Cyclic Codes

Like classical block codes, a locally repairable code also obeys the Singleton-type bound (we call a locally repairable code <italic>optimal</italic> if it achieves the Singleton-type bound). In the breakthrough work of Tamo and Barg, several classes of optimal locally repairable codes were constructed via subcodes of Reed–Solomon codes. Thus, the lengths of the codes given by Tamo and Barg are upper bounded by the code alphabet size <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>. Recently, it was proved through the extension of construction by Tamo and Barg that the length of <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-ary optimal locally repairable codes can be <inline-formula> <tex-math notation="LaTeX">$q+1$ </tex-math></inline-formula> by Jin <italic>et al</italic>. Surprisingly, Barg <italic>et al.</italic> presented a few examples of <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-ary optimal locally repairable codes of small distance and locality with code length achieving roughly <inline-formula> <tex-math notation="LaTeX">$q^{2}$ </tex-math></inline-formula>. Very recently, it was further shown in the work of Li <italic>et al.</italic> that there exist <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-ary optimal locally repairable codes with the length bigger than <inline-formula> <tex-math notation="LaTeX">$q+1$ </tex-math></inline-formula> and the distance proportional to <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>. Thus, it becomes an interesting and challenging problem to construct new families of <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>-ary optimal locally repairable codes of length bigger than <inline-formula> <tex-math notation="LaTeX">$q+1$ </tex-math></inline-formula>. In this paper, we construct a class of optimal locally repairable codes of distances 3 and 4 with unbounded length (i.e., length of the codes is independent of the code alphabet size). Our technique is through cyclic codes with particular generator and parity-check polynomials that are carefully chosen.

[1]  Chaoping Xing,et al.  Construction of Optimal Locally Repairable Codes via Automorphism Groups of Rational Function Fields , 2020, IEEE Transactions on Information Theory.

[2]  Gretchen L. Matthews,et al.  Locally recoverable codes from algebraic curves and surfaces , 2017, ArXiv.

[3]  Chaoping Xing,et al.  Optimal Locally Repairable Codes Via Elliptic Curves , 2017, IEEE Transactions on Information Theory.

[4]  P. Vijay Kumar,et al.  Optimal linear codes with a local-error-correction property , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[5]  Chaoping Xing,et al.  Coding Theory: A First Course , 2004 .

[6]  A. Robert Calderbank,et al.  Rate optimal binary linear locally repairable codes with small availability , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[7]  Itzhak Tamo,et al.  Locally Recoverable Codes on Algebraic Curves , 2017, IEEE Transactions on Information Theory.

[8]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[9]  Itzhak Tamo,et al.  A family of optimal locally recoverable codes , 2014, ISIT.

[10]  Sriram Vishwanath,et al.  Optimal locally repairable codes via rank-metric codes , 2013, 2013 IEEE International Symposium on Information Theory.

[11]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[12]  Kellyann Geurts,et al.  A theory of error , 2005, C&C '05.

[13]  Dimitris S. Papailiopoulos,et al.  Optimal Locally Repairable Codes and Connections to Matroid Theory , 2016, IEEE Trans. Inf. Theory.

[14]  Sergey Yekhanin,et al.  On the locality of codeword symbols in non-linear codes , 2013, Discret. Math..

[15]  Paul H. Siegel,et al.  Cyclic linear binary locally repairable codes , 2015, 2015 IEEE Information Theory Workshop (ITW).

[16]  Dimitris S. Papailiopoulos,et al.  Locally Repairable Codes , 2012, IEEE Transactions on Information Theory.

[17]  Minghua Chen,et al.  Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency in Reliable Data Storage Systems , 2007, Sixth IEEE International Symposium on Network Computing and Applications (NCA 2007).

[18]  Itzhak Tamo,et al.  A Family of Optimal Locally Recoverable Codes , 2013, IEEE Transactions on Information Theory.

[19]  Luis Alfonso Lastras-Montaño,et al.  Reliable Memories with Subline Accesses , 2007, 2007 IEEE International Symposium on Information Theory.