TEQUILA: a platform for rapid development of quantum algorithms

Variational quantum algorithms are currently the most promising class of algorithms on near-term quantum computers. In contrast to classical algorithms, there are almost no standardized methods yet, and the field continues to evolve rapidly. Similar to classical methods, heuristics play a crucial role in the development of new quantum algorithms, resulting in a high demand for flexible and reliable ways to implement, test, and share new ideas. Inspired by this demand, we introduce Tequila, a development package for quantum algorithms in python, designed for fast and flexible implementation, prototyping and deployment of novel quantum algorithms in electronic structure and other fields. Tequila operates with abstract expectation values which can be combined, transformed, differentiated, and optimized. On evaluation, the abstract data structures are compiled to run on state of the art quantum simulators or interfaces.

[1]  Jakob S. Kottmann,et al.  Reducing Qubit Requirements while Maintaining Numerical Precision for the Variational Quantum Eigensolver: A Basis-Set-Free Approach. , 2020, The journal of physical chemistry letters.

[2]  Jakob S. Kottmann,et al.  Meta-Variational Quantum Eigensolver: Learning Energy Profiles of Parameterized Hamiltonians for Quantum Simulation , 2020, 2009.13545.

[3]  Nicholas J. Mayhall,et al.  Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm , 2019, npj Quantum Information.

[4]  Nathan Killoran,et al.  Quantum Natural Gradient , 2019, Quantum.

[5]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[6]  Gavin E. Crooks,et al.  Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition , 2019, 1905.13311.

[7]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[8]  Harper R. Grimsley,et al.  Is the Trotterized UCCSD Ansatz Chemically Well-Defined? , 2019, Journal of chemical theory and computation.

[9]  K. B. Whaley,et al.  Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. , 2018, Journal of chemical theory and computation.

[10]  Xiao Wang,et al.  Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. , 2017, Journal of chemical theory and computation.

[11]  Harper R. Grimsley,et al.  Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient Ansätze on a Quantum Processor , 2019, 1911.10205.

[12]  Robert A. Lang,et al.  On the order problem in construction of unitary operators for the variational quantum eigensolver. , 2020, Physical chemistry chemical physics : PCCP.

[13]  Ching-Hsing Yu,et al.  SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre , 2010 .

[14]  P. Joergensen,et al.  Second Quantization-based Methods in Quantum Chemistry , 1981 .

[15]  Ching-Hsing Yu,et al.  Deploying a Top-100 Supercomputer for Large Parallel Workloads: the Niagara Supercomputer , 2019, PEARC.

[16]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[17]  Kanav Setia,et al.  Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer. , 2017, The Journal of chemical physics.

[18]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[19]  Ross Duncan,et al.  t|ket⟩: a retargetable compiler for NISQ devices , 2020, Quantum Science and Technology.

[20]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[21]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[22]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[23]  Diego Garc'ia-Mart'in,et al.  Qibo: a framework for quantum simulation with hardware acceleration , 2020, ArXiv.

[24]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[25]  D Zhu,et al.  Training of quantum circuits on a hybrid quantum computer , 2018, Science Advances.

[26]  Robert A. Lang,et al.  Iterative Qubit Coupled Cluster method with involutory linear combinations of Pauli products , 2020, 2002.05701.

[27]  Tzu-Ching Yen,et al.  Measuring all compatible operators in one series of single-qubit measurements using unitary transformations. , 2019, Journal of chemical theory and computation.

[28]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[29]  Robert J. Harrison,et al.  MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation , 2015, SIAM J. Sci. Comput..

[30]  Isaiah Shavitt,et al.  Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory , 2009 .

[31]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[32]  Edward F. Valeev,et al.  Direct determination of optimal pair-natural orbitals in a real-space representation: The second-order Moller-Plesset energy. , 2020, The Journal of chemical physics.

[33]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[34]  Gian Giacomo Guerreschi,et al.  Resource-efficient digital quantum simulation of d-level systems for photonic, vibrational, and spin-s Hamiltonians , 2019, npj Quantum Information.

[35]  Scott N. Genin,et al.  Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer. , 2018, Journal of chemical theory and computation.

[36]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[37]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[38]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[39]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[40]  L. Landau Fermionic quantum computation , 2000 .

[41]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[42]  Daniel G A Smith,et al.  Psi4 1.4: Open-source software for high-throughput quantum chemistry. , 2020, The Journal of chemical physics.

[43]  Vladyslav Verteletskyi,et al.  Measurement optimization in the variational quantum eigensolver using a minimum clique cover. , 2019, The Journal of chemical physics.

[44]  Pauline J Ollitrault,et al.  Quantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equivalents? , 2019, The Journal of chemical physics.

[45]  Paul,et al.  SECOND QUANTIZATION- BASED METIJODS IN QUANTUM CHEMISTRY , 2003 .

[46]  Péter R. Surján,et al.  Second Quantized Approach to Quantum Chemistry: An Elementary Introduction , 1989 .

[47]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[48]  N. Killoran,et al.  Strawberry Fields: A Software Platform for Photonic Quantum Computing , 2018, Quantum.

[49]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[50]  S. Brierley,et al.  Variational Quantum Computation of Excited States , 2018, Quantum.

[51]  Alán Aspuru-Guzik,et al.  Phoenics: A Bayesian Optimizer for Chemistry , 2018, ACS central science.

[52]  Jos'e I. Latorre,et al.  Data re-uploading for a universal quantum classifier , 2019, Quantum.

[53]  Artur F. Izmaylov,et al.  Iterative Qubit Coupled Cluster approach with efficient screening of generators. , 2019, Journal of chemical theory and computation.

[54]  Travis S. Humble,et al.  XACC: a system-level software infrastructure for heterogeneous quantum–classical computing , 2019, Quantum Science and Technology.

[55]  Qiming Sun,et al.  Libcint: An efficient general integral library for Gaussian basis functions , 2014, J. Comput. Chem..