Hot working behavior and processing map of a γ-TiAl alloy synthesized by powder metallurgy

[1]  K. P. Rao,et al.  Comparison of titanium silicide and carbide reinforced in situ synthesized TiAl composites and their mechanical properties , 2011 .

[2]  M. Dománková,et al.  Creep behaviour of a new air-hardenable intermetallic Ti–46Al–8Ta alloy , 2011 .

[3]  B. Liu,et al.  Hot deformation behavior of TiAl alloys prepared by blended elemental powders , 2011 .

[4]  L. Peng,et al.  Microstructural and high temperature deformation characterization of Ti―45Al―3Nb―(Cr, Mn, Mo, Sc) alloy , 2010 .

[5]  Kamineni Pitcheswara Rao,et al.  Processing map and hot working mechanisms in a P/M TiAl alloy composite with in situ carbide and silicide dispersions , 2010 .

[6]  Hua-ming Wang,et al.  The effects of heat treatment on the microstructure and mechanical property of laser melting deposition γ-TiAl intermetallic alloys , 2010 .

[7]  Bin Liu,et al.  Constitutive modeling and processing map for elevated temperature flow behaviors of a powder metallurgy titanium aluminide alloy , 2009 .

[8]  E. Rybacki,et al.  High strain torsion of a TiAl-based alloy , 2008 .

[9]  B. Liu,et al.  Simulation of hot compression of Ti–Al alloy , 2007 .

[10]  M. Oehring,et al.  Nano‐Scale Design of TiAl Alloys Based on β‐Phase Decomposition , 2006 .

[11]  G. Chen,et al.  Deformability and microstructure transformation of pilot ingot of Ti–45Al–(8–9)Nb–(W,B,Y) alloy , 2006 .

[12]  Marc Thomas,et al.  Cast and PM processing development in gamma aluminides , 2005 .

[13]  T. Carneiro,et al.  Evaluation of ingots and alpha-extrusions of gamma alloys based on Ti–45Al–6Nb , 2005 .

[14]  L. Xiaoqing,et al.  Microstructure and properties of a TiAl alloy prepared by mechanical milling and subsequent reactive sintering , 2005 .

[15]  Jinsan Wang,et al.  A new intermetallic compound in TiAl+Nb composition area of the Ti–Al–Nb ternary system , 2005 .

[16]  C. Klinkenberg,et al.  Physical aspects of hot-working gamma-based titanium aluminides , 2004 .

[17]  K. P. Rao,et al.  Mechanisms of high temperature deformation in electrolytic copper in extended ranges of temperature and strain rate , 2004 .

[18]  H. Kestler,et al.  Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing , 2004 .

[19]  F. Schimansky,et al.  Powder Metallurgical Processing of Intermetallic Gamma Titanium Aluminides , 2004 .

[20]  T. Nieh,et al.  Microstructures and properties of powder metallurgy TiAl alloys , 2004 .

[21]  Y. V. R. K. Prasad,et al.  Processing maps: A status report , 2003 .

[22]  J. Kim,et al.  High-temperature deformation behavior of a gamma TiAl alloy—Microstructural evolution and mechanisms , 2003 .

[23]  Y. Prasad,et al.  Hot workability of as-cast Fe3Al–2.5%Cr intermetallic alloy , 2003 .

[24]  F. Schimansky,et al.  High-temperature mechanical properties of hot isostatically pressed and forged gamma titanium aluminide alloy powder , 2002 .

[25]  Y. Prasad,et al.  Hot working behavior of extruded powder products of B2 iron aluminide alloys , 2001 .

[26]  M. Oehring,et al.  Recent progress in the development of gamma titanium aluminide alloys , 2000 .

[27]  Helmut Clemens,et al.  Processing and applications of intermetallic γ-TiAl-based alloys , 2000 .

[28]  Y. Prasad,et al.  Characterization of mechanisms of hot deformation of as-cast nickel aluminide alloy , 2000 .

[29]  F. Froes,et al.  Formation of a submicrocrystalline structure in TiAl and Ti3Al intermetallics by hot working , 2000 .

[30]  Y. Mishin,et al.  Self-diffusion in γ-TiAl: an experimental study and atomistic calculations , 1999 .

[31]  S. Semiatin,et al.  Intergranular fracture of gamma titanium aluminides under hot working conditions , 1998 .

[32]  W. Hwang,et al.  The preparation of TiAl-based intermetallics from elemental powders through a two-step pressureless sintering process , 1998 .

[33]  S. Hong,et al.  HIGH TEMPERATURE DEFORMATION BEHAVIOR AND MICROSTRUCTURAL EVOLUTION OF Ti-47Al-2Cr-4Nb INTERMETALLIC ALLOYS , 1998 .

[34]  Y. Prasad,et al.  Modelling of hot deformation for microstructural control , 1998 .

[35]  Yellapregeda Prasad V.R.K.,et al.  Hot Working Guide: A Compendium of Processing Maps , 1997 .

[36]  W. Hwang,et al.  Solid-state hot pressing of elemental aluminum and titanium powders to form TiAl (γ + α2) intermetallic microstructure , 1996 .

[37]  Young-Won Kim Effects of microstructure on the deformation and fracture of γ-TiAl alloys , 1995 .

[38]  M. Oehring,et al.  Mechanical properties of submicron‐grained TiAl alloys prepared by mechanical alloying , 1995 .

[39]  John J. Jonas,et al.  Strength and structure under hot-working conditions , 1969 .

[40]  T. Charlton Progress in Solid Mechanics , 1962, Nature.

[41]  J. Lin,et al.  Microstructures and mechanical properties of directionally solidified Ti–45Al–8Nb–(W, B, Y) alloys , 2011 .

[42]  Xiaoming He,et al.  Mathematical modeling for high temperature flow behavior of as-cast Ti–45Al–8.5Nb–(W,B,Y) alloy , 2009 .

[43]  I. Jones,et al.  Effects of major alloying additions on the microstructure and mechanical properties of γ-TiAl , 1999 .

[44]  Y-W. Kim,et al.  Microstructure/property relationships in titanium aluminides and alloys , 1990 .