Semi-Supervised Kernel Mean Shift Clustering

Mean shift clustering is a powerful nonparametric technique that does not require prior knowledge of the number of clusters and does not constrain the shape of the clusters. However, being completely unsupervised, its performance suffers when the original distance metric fails to capture the underlying cluster structure. Despite recent advances in semi-supervised clustering methods, there has been little effort towards incorporating supervision into mean shift. We propose a semi-supervised framework for kernel mean shift clustering (SKMS) that uses only pairwise constraints to guide the clustering procedure. The points are first mapped to a high-dimensional kernel space where the constraints are imposed by a linear transformation of the mapped points. This is achieved by modifying the initial kernel matrix by minimizing a log det divergence-based objective function. We show the advantages of SKMS by evaluating its performance on various synthetic and real datasets while comparing with state-of-the-art semi-supervised clustering algorithms.

[1]  Peter Meer,et al.  Nonlinear Mean Shift for Clustering over Analytic Manifolds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  Gregory D. Hager,et al.  Multiple kernel tracking with SSD , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[3]  Fei-Fei Li,et al.  What Does Classifying More Than 10, 000 Image Categories Tell Us? , 2010, ECCV.

[4]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[5]  Peter Meer,et al.  Simultaneous multiple 3D motion estimation via mode finding on Lie groups , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[6]  M. Cugmas,et al.  On comparing partitions , 2015 .

[7]  Inderjit S. Dhillon,et al.  Semi-supervised graph clustering: a kernel approach , 2005, Machine Learning.

[8]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[9]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[10]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Inderjit S. Dhillon,et al.  Clustering with Bregman Divergences , 2005, J. Mach. Learn. Res..

[12]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[13]  Charles A. Micchelli,et al.  On Spectral Learning , 2010, J. Mach. Learn. Res..

[14]  Bo Thiesson,et al.  Image and Video Segmentation by Anisotropic Kernel Mean Shift , 2004, ECCV.

[15]  Myra Spiliopoulou,et al.  Density-based semi-supervised clustering , 2010, Data Mining and Knowledge Discovery.

[16]  Takeo Kanade,et al.  Mode-seeking by Medoidshifts , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[17]  Rayid Ghani,et al.  Combining Labeled and Unlabeled Data for MultiClass Text Categorization , 2002, ICML.

[18]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[19]  Raymond J. Mooney,et al.  A probabilistic framework for semi-supervised clustering , 2004, KDD.

[20]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[22]  Fatih Murat Porikli,et al.  Kernel methods for weakly supervised mean shift clustering , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[23]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[24]  Ian Davidson,et al.  Constrained Clustering: Advances in Algorithms, Theory, and Applications , 2008 .

[25]  Frank Nielsen,et al.  Shape Retrieval Using Hierarchical Total Bregman Soft Clustering , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Zhiwu Lu,et al.  Constrained Spectral Clustering via Exhaustive and Efficient Constraint Propagation , 2010, ECCV.

[27]  Miguel Á. Carreira-Perpiñán,et al.  Constrained spectral clustering through affinity propagation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Inderjit S. Dhillon,et al.  Low-Rank Kernel Learning with Bregman Matrix Divergences , 2009, J. Mach. Learn. Res..

[29]  Raymond J. Mooney,et al.  Integrating constraints and metric learning in semi-supervised clustering , 2004, ICML.

[30]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[31]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[32]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[33]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[34]  Inderjit S. Dhillon,et al.  Metric and Kernel Learning Using a Linear Transformation , 2009, J. Mach. Learn. Res..

[35]  Jörg Sander,et al.  Semi-supervised Density-Based Clustering , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[36]  Stefano Soatto,et al.  Quick Shift and Kernel Methods for Mode Seeking , 2008, ECCV.

[37]  Meirav Galun,et al.  Fundamental Limitations of Spectral Clustering , 2006, NIPS.

[38]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[39]  Haifeng Chen,et al.  Robust fusion of uncertain information , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[40]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .