Layered convection as the origin of Saturn/'s luminosity anomaly

Saturn is brighter than expected for a gas giant of its age. Calculations of Saturn’s thermal evolution show that the presence of layered convection in Saturn’s interior—much like that observed in the Earth’s oceans—would have slowed the planet’s cooling and may explain Saturn’s anomalous luminosity.

[1]  E. Salpeter On convection and gravitational layering in Jupiter and in stars of low mass. , 1973 .

[2]  H. Farmer A new perspective. , 1988, The Journal of the Florida Medical Association.

[3]  Phase separation in giant planets: inhomogeneous evolution of Saturn , 2003, astro-ph/0305031.

[4]  T. Guillot,et al.  SELF-CONSISTENT MODEL ATMOSPHERES AND THE COOLING OF THE SOLAR SYSTEM'S GIANT PLANETS , 2011, 1101.0606.

[5]  P. Garaud,et al.  A NEW MODEL FOR MIXING BY DOUBLE-DIFFUSIVE CONVECTION (SEMI-CONVECTION). I. THE CONDITIONS FOR LAYER FORMATION , 2011, 1112.4819.

[6]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[7]  Gregory Laughlin,et al.  ON THE ANOMALOUS RADII OF THE TRANSITING EXTRASOLAR PLANETS , 2011, 1101.5827.

[8]  Hohl,et al.  Miscibility of hydrogen and helium under astrophysical conditions. , 1995, Physical review letters.

[9]  T. Guillot,et al.  The Interior of Jupiter , 2004 .

[10]  A. Traxler,et al.  TURBULENT MIXING AND LAYER FORMATION IN DOUBLE-DIFFUSIVE CONVECTION: THREE-DIMENSIONAL NUMERICAL SIMULATIONS AND THEORY , 2010, 1012.0617.

[11]  Benjamin Levrard,et al.  Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity , 2010, 1004.0463.

[12]  D. Stevenson Formation of Giant Planets , 1982 .

[13]  W. Hubbard,et al.  Statistical mechanics of light elements at high pressure. VII: A perturbative free energy for arbitrary mixtures of H and He , 1985 .

[14]  D. Stevenson Cosmochemistry and structure of the giant planets and their satellites , 1985 .

[15]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[16]  E. Salpeter,et al.  The dynamics and helium distribution in hydrogen-helium fluid planets , 1977 .

[17]  J. Pollack,et al.  A calculation of Saturn's gravitational contraction history , 1977 .

[18]  D. SaumonT. Guillot Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004 .

[19]  Burkhard Militzer,et al.  Rocky core solubility in Jupiter and giant exoplanets. , 2011, Physical review letters.

[20]  W. Hubbard,et al.  Models of Uranus' interior and magnetic field , 1991 .

[21]  M. Stern The "Salt-Fountain" and Thermohaline Convection , 1960 .

[22]  Gilles Chabrier,et al.  Heat transport in giant (exo)planets: a new perspective , 2007 .

[23]  D. Ceperley,et al.  Phase separation in hydrogen–helium mixtures at Mbar pressures , 2009, Proceedings of the National Academy of Sciences.

[24]  J. Fortney,et al.  Inhomogeneous Evolution of Giant Planets: Jupiter and Saturn , 2002 .

[25]  Gilles Chabrier,et al.  A new vision of giant planet interiors: Impact of double diffusive convection , 2012, 1201.4483.

[26]  Steven D. Kawaler,et al.  Stellar interiors - physical principles, structure, and evolution , 1999, Astronomy and astrophysics library.

[27]  E. Salpeter,et al.  The phase diagram and transport properties for hydrogen-helium fluid planets , 1977 .

[28]  Jonathan J. Fortney,et al.  THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED , 2011, 1105.0024.

[29]  Ronald Redmer,et al.  Demixing of hydrogen and helium at megabar pressures. , 2009, Physical review letters.

[30]  B. Militzer,et al.  SOLUBILITY OF WATER ICE IN METALLIC HYDROGEN: CONSEQUENCES FOR CORE EROSION IN GAS GIANT PLANETS , 2012 .

[31]  T. Radko What determines the thickness of layers in a thermohaline staircase? , 2005, Journal of Fluid Mechanics.