Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses

[1]  Congli He,et al.  A Reliable All‐2D Materials Artificial Synapse for High Energy‐Efficient Neuromorphic Computing , 2021, Advanced Functional Materials.

[2]  Leyong Jiang,et al.  Photoelectric Visual Adaptation Based on 0D‐CsPbBr3‐Quantum‐Dots/2D‐MoS2 Mixed‐Dimensional Heterojunction Transistor , 2021, Advanced Functional Materials.

[3]  L. Tetard,et al.  Optoelectronic synapse using monolayer MoS2 field effect transistors , 2020, Scientific Reports.

[4]  Yue Wang,et al.  Optoelectronic Synaptic Devices for Neuromorphic Computing , 2020, Adv. Intell. Syst..

[5]  Jun He,et al.  Vertical 0D-Perovskite/2D-MoS2 van der Waals Heterojunction Phototransistor for Emulating Photoelectric-Synergistically Classical Pavlovian Conditioning and Neural Coding Dynamics. , 2020, Small.

[6]  Mohit Kumar,et al.  Environment-Adaptable Photonic-Electronic-Coupled Neuromorphic Angular Visual System. , 2020, ACS nano.

[7]  Congli He,et al.  Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors , 2020, Nature Electronics.

[8]  Qinghua Zhang,et al.  Wafer-scale Highly Oriented Monolayer MoS2 with Large Domain Sizes. , 2020, Nano letters.

[9]  Xiao Zhi Qiu,et al.  A biomimetic eye with a hemispherical perovskite nanowire array retina , 2020, Nature.

[10]  L. Chua,et al.  All‐Optically Controlled Memristor for Optoelectronic Neuromorphic Computing , 2020, Advanced Functional Materials.

[11]  Hao Zhu,et al.  Ultralow Power Wearable Heterosynapse with Photoelectric Synergistic Modulation , 2020, Advanced science.

[12]  Congli He,et al.  Artificial synapse based on van der Waals heterostructures with tunable synaptic functions for neuromorphic computing. , 2020, ACS applied materials & interfaces.

[13]  Yeongjun Lee,et al.  Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics , 2019, Advanced materials.

[14]  Sen Song,et al.  Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges , 2019, Advanced materials.

[15]  Shimeng Yu,et al.  Optoelectronic resistive random access memory for neuromorphic vision sensors , 2019, Nature Nanotechnology.

[16]  Wuhong Xue,et al.  An Oxide Schottky Junction Artificial Optoelectronic Synapse. , 2019, ACS nano.

[17]  Yongli Gao,et al.  2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. , 2019, Nanoscale.

[18]  Q. Vu,et al.  Two‐Terminal Multibit Optical Memory via van der Waals Heterostructure , 2018, Advanced materials.

[19]  David-Wei Zhang,et al.  A MoS2/PTCDA Hybrid Heterojunction Synapse with Efficient Photoelectric Dual Modulation and Versatility , 2018, Advanced materials.

[20]  Hong Wang,et al.  Photoelectric Plasticity in Oxide Thin Film Transistors with Tunable Synaptic Functions , 2018, Advanced Electronic Materials.

[21]  Yan Wang,et al.  Infrared‐Sensitive Memory Based on Direct‐Grown MoS2–Upconversion‐Nanoparticle Heterostructure , 2018, Advanced materials.

[22]  Su‐Ting Han,et al.  Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing , 2018, Advanced materials.

[23]  Zhenxing Wang,et al.  High-performance, multifunctional devices based on asymmetric van der Waals heterostructures , 2018, Nature Electronics.

[24]  Arindam Basu,et al.  Synergistic Gating of Electro‐Iono‐Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity , 2018, Advanced materials.

[25]  Lin Gan,et al.  Photonic Potentiation and Electric Habituation in Ultrathin Memristive Synapses Based on Monolayer MoS2. , 2018, Small.

[26]  Di Chen,et al.  An Artificial Flexible Visual Memory System Based on an UV‐Motivated Memristor , 2018, Advanced materials.

[27]  S. Long,et al.  Light-Gated Memristor with Integrated Logic and Memory Functions. , 2017, ACS nano.

[28]  Yunqi Liu,et al.  A Retina‐Like Dual Band Organic Photosensor Array for Filter‐Free Near‐Infrared‐to‐Memory Operations , 2017, Advanced materials.

[29]  W. Lu,et al.  Recent Progress on Localized Field Enhanced Two-dimensional Material Photodetectors from Ultraviolet-Visible to Infrared. , 2017, Small.

[30]  Young Sun,et al.  A Synaptic Transistor based on Quasi‐2D Molybdenum Oxide , 2017, Advanced materials.

[31]  Juwon Lee,et al.  Monolayer optical memory cells based on artificial trap-mediated charge storage and release , 2017, Nature Communications.

[32]  Gvido Bratina,et al.  Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. , 2016, Nature nanotechnology.

[33]  Run‐Wei Li,et al.  Organic Biomimicking Memristor for Information Storage and Processing Applications , 2016 .

[34]  Yuchao Yang,et al.  Memristive Physically Evolving Networks Enabling the Emulation of Heterosynaptic Plasticity , 2015, Advanced materials.

[35]  Gerasimos Konstantatos,et al.  Highly Sensitive, Encapsulated MoS2 Photodetector with Gate Controllable Gain and Speed. , 2015, Nano letters.

[36]  Yihong Wu,et al.  An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions , 2015, Advanced materials.

[37]  M. Tang,et al.  Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics , 2015, Advanced materials.

[38]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[39]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[40]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[41]  J. C. Phillips,et al.  Stretched exponential relaxation in molecular and electronic glasses , 1996 .