Planning with Spatio-Temporal Search Control Knowledge

Knowledge based approaches developed for AI planning can convert an intractable planning problem to a tractable one. Current techniques often use temporal logics to express Search Control Knowledge (SCK) in logic based planning. However, traditional temporal logics are limited in expressiveness since they are unable to express spatial constraints which are as important as temporal ones in many planning domains. To this end, we propose a two-dimensional (spatial and temporal) logic namely PPTL<inline-formula><tex-math notation="LaTeX">$^{\mathrm{SL}}$ </tex-math><alternatives><inline-graphic xlink:href="lu-ieq1-2810144.gif"/></alternatives></inline-formula> by temporalizing separation logic with PPTL (Propositional Projection Temporal Logic) which is well-suited to specify SCK involving both spatial and temporal constraints in planning. We prove that PPTL<inline-formula> <tex-math notation="LaTeX">$^{\mathrm{SL}}$</tex-math><alternatives><inline-graphic xlink:href="lu-ieq2-2810144.gif"/> </alternatives></inline-formula> is decidable essentially via an equisatisfiable translation from PPTL<inline-formula> <tex-math notation="LaTeX">$^{\mathrm{SL}}$</tex-math><alternatives><inline-graphic xlink:href="lu-ieq3-2810144.gif"/> </alternatives></inline-formula> to its restricted form. Moreover, we implement a tool, <italic>S-TSolver</italic>, which effectively computes plans under the guidance of the spatio-temporal SCK expressed by PPTL<inline-formula> <tex-math notation="LaTeX">$^{\mathrm{SL}}$</tex-math><alternatives><inline-graphic xlink:href="lu-ieq4-2810144.gif"/> </alternatives></inline-formula> formulas. The effectiveness of the tool is evaluated on selected benchmark domains from the International Planning Competition.

[1]  Reuben N. S. Rowe,et al.  Model checking for symbolic-heap separation logic with inductive predicates , 2016, POPL.

[2]  Zhenhua Duan,et al.  An extended interval temporal logic and a framing technique for temporal logic programming , 1996 .

[3]  Leslie Pack Kaelbling,et al.  Learning Probabilistic Relational Planning Rules , 2004, ICAPS.

[4]  Fahiem Bacchus,et al.  Planning for temporally extended goals , 1996, Annals of Mathematics and Artificial Intelligence.

[5]  Djamel-Eddine Saïdouni,et al.  Spatio-Temporal Planning for Mobile Ambient Agents , 2015, FNC/MobiSPC.

[6]  Calin Belta,et al.  SpaTeL: a novel spatial-temporal logic and its applications to networked systems , 2015, HSCC.

[7]  Robert Givan,et al.  Learning Control Knowledge for Forward Search Planning , 2008, J. Mach. Learn. Res..

[8]  Marco Aiello,et al.  HTN planning: Overview, comparison, and beyond , 2015, Artif. Intell..

[9]  Philippa Gardner,et al.  From Separation Logic to First-Order Logic , 2005, FoSSaCS.

[10]  Lukás Chrpa,et al.  The 2014 International Planning Competition: Progress and Trends , 2015, AI Mag..

[11]  Malte Helmert,et al.  Complexity results for standard benchmark domains in planning , 2003, Artif. Intell..

[12]  Carla Limongelli,et al.  Linear temporal logic as an executable semantics for planning languages , 2007, J. Log. Lang. Inf..

[13]  Peter W. O'Hearn,et al.  Symbolic Execution with Separation Logic , 2005, APLAS.

[14]  Marco Pistore,et al.  Planning with a language for extended goals , 2002, AAAI/IAAI.

[15]  Stephan Merz,et al.  A Spatio-Temporal Logic for the Specification and Refinement of Mobile Systems , 2003, FASE.

[16]  Dana S. Nau,et al.  SHOP2: An HTN Planning System , 2003, J. Artif. Intell. Res..

[17]  Sylvie Thiébaux,et al.  Search Control in Planning for Temporally Extended Goals , 2005, ICAPS.

[18]  Li Zhang,et al.  A decision procedure for propositional projection temporal logic with infinite models , 2008, Acta Informatica.

[19]  John C. Reynolds,et al.  Separation logic: a logic for shared mutable data structures , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[20]  Clark W. Barrett,et al.  The SMT-LIB Standard Version 2.0 , 2010 .

[21]  Zhenhua Duan,et al.  Propositional Projection Temporal Logic, Bchi Automata and omega-Regular Expressions , 2008, TAMC.

[22]  Shyamanta M. Hazarika,et al.  Qualitative spatial change: space-time histories and continuity , 2005 .

[23]  Detlef Plump,et al.  From Hyperedge Replacement to Separation Logic and Back , 2008, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..

[24]  Roman Barták,et al.  An Experimental Study of Influence of Modeling and Solving Techniques on Performance of a Tabled Logic Programming Planner , 2016, Fundam. Informaticae.

[25]  F. Maris,et al.  SMT Spatio-Temporal Planning , 2012 .

[26]  Zhenhua Duan,et al.  Complexity of propositional projection temporal logic with star , 2009, Math. Struct. Comput. Sci..

[27]  Peter W. O'Hearn,et al.  Computability and Complexity Results for a Spatial Assertion Language for Data Structures , 2001, APLAS.

[28]  Bart Selman,et al.  Control Knowledge in Planning: Benefits and Tradeoffs , 1999, AAAI/IAAI.

[29]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[30]  Stéphane Demri,et al.  On the almighty wand , 2012, Inf. Comput..

[31]  Bernhard Reus,et al.  A Complete Temporal and Spatial Logic for Distributed Systems , 2005, FroCoS.

[32]  Stefan Edelkamp,et al.  Automated Planning: Theory and Practice , 2007, Künstliche Intell..

[33]  Viktor Vafeiadis Program Verification Under Weak Memory Consistency Using Separation Logic , 2017, CAV.

[34]  Fahiem Bacchus,et al.  Using temporal logics to express search control knowledge for planning , 2000, Artif. Intell..

[35]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[36]  Patrick Doherty,et al.  A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems , 2009, Autonomous Agents and Multi-Agent Systems.

[37]  Peter W. O'Hearn,et al.  A Decidable Fragment of Separation Logic , 2004, FSTTCS.

[38]  Marius Bozga,et al.  Quantitative Separation Logic and Programs with Lists , 2008, Journal of Automated Reasoning.

[39]  Lukás Chrpa,et al.  Guiding Planning Engines by Transition-Based Domain Control Knowledge , 2016, KR.

[40]  Peter W. O'Hearn,et al.  Shape Analysis for Composite Data Structures , 2007, CAV.

[41]  Jonas Kvarnström,et al.  TALplanner in the Third International Planning Competition: Extensions and Control Rules , 2003, J. Artif. Intell. Res..

[42]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[43]  Robert Givan,et al.  Learning Domain-Specific Control Knowledge from Random Walks , 2004, ICAPS.