Interdiffusion and atomic mobility in hcp Mg–Al–Sn alloys

[1]  W. Boettinger,et al.  Development of a Diffusion Mobility Database for Co-Based Superalloys , 2002, Journal of Phase Equilibria and Diffusion.

[2]  M. Chu,et al.  The interdiffusivity matrices in fcc_A1 Ni–Cr–V alloys: A high-throughput evaluation by CALTPP program , 2021 .

[3]  Yong Du,et al.  Assessment of atomic mobilities and simulation of precipitation evolution in Mg-X (X=Al, Zn, Sn) alloys , 2021 .

[4]  W. Zhong,et al.  A comprehensive diffusion mobility database comprising 23 elements for magnesium alloys , 2020 .

[5]  Yong Du,et al.  Diffusivity and atomic mobility for fcc Ni–Cu–Ti alloy: Measurements and an intelligent modeling , 2020, Calphad.

[6]  Zhang Huaqing,et al.  CALTPP: A general program to calculate thermophysical properties , 2020 .

[7]  Yong Du,et al.  Diffusivities and Atomic Mobilities for the Cu-Rich fcc Cu-Al-Sn Alloys at 1073 K , 2020 .

[8]  Guanglong Xu,et al.  Diffusion research in HCP Mg–Al–Sn ternary alloys , 2020 .

[9]  Yong Du,et al.  A novel approach to calculate diffusion matrix in ternary systems: Application to Ag–Mg–Mn and Cu–Ni–Sn systems , 2020 .

[10]  Y. Chino,et al.  A room temperature formable magnesium–silver–calcium sheet alloy with high ductility , 2020 .

[11]  Dingfei Zhang,et al.  Influence of minor Ce additions on the microstructure and mechanical properties of Mg-1.0Sn-0.6Ca alloy , 2020 .

[12]  M. Bermingham,et al.  Understanding solid solution strengthening at elevated temperatures in a creep-resistant Mg–Gd–Ca alloy , 2019 .

[13]  Jonghyun Kim,et al.  Effects of Mn addition on the microstructures, mechanical properties and work-hardening of Mg-1Sn alloy , 2019, Materials Science and Engineering: A.

[14]  J. Llorca,et al.  Effect of solute content and temperature on the deformation mechanisms and critical resolved shear stress in Mg-Al and Mg-Zn alloys , 2019, Acta Materialia.

[15]  Lijun Zhang,et al.  Update of thermodynamic descriptions of the binary Al-Sn and ternary Mg-Al-Sn systems , 2019, Calphad.

[16]  Dexue Liu,et al.  Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review , 2019, Journal of Materials Research and Technology.

[17]  F. Pan,et al.  Improved formability with theoretical critical shear strength transforming in Mg alloys with Sn addition , 2018, Journal of Alloys and Compounds.

[18]  R. Wu,et al.  Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems , 2018, Journal of Magnesium and Alloys.

[19]  Junjie He,et al.  Role of Al content on the microstructure, texture and mechanical properties of Mg-3.5Ca based alloys , 2018, Materials Science and Engineering: A.

[20]  K. Kainer,et al.  Recent research and developments on wrought magnesium alloys , 2017 .

[21]  Zi-kui Liu,et al.  A comprehensive first-principles study of pure elements: Vacancy formation and migration energies and self-diffusion coefficients , 2016 .

[22]  Weibin Zhang,et al.  Experimental investigation and computational study of atomic mobility in fcc ternary Co–Cr–W alloys , 2014 .

[23]  R. Mahmudi,et al.  Effects of Sn additions on the microstructure and impression creep behavior of AZ91 magnesium alloy , 2013 .

[24]  I. Steinbach,et al.  Atomic mobilities and diffusivities in the fcc, L12 and B2 phases of the Ni-Al system , 2010 .

[25]  R. Mahmudi,et al.  Effects of Zr Additions on the Microstructure and Impression Creep Behavior of AZ91 Magnesium Alloy , 2010 .

[26]  R. Mahmudi,et al.  The microstructure and impression creep behavior of cast, Mg–5Sn–xCa alloys , 2010 .

[27]  R. Mahmudi,et al.  Impression Creep Behavior of a Cast AZ91 Magnesium Alloy , 2008 .

[28]  C. Hutchinson,et al.  Modeling the precipitation processes and strengthening mechanisms in a Mg-Al-(Zn) AZ91 alloy , 2005 .

[29]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[30]  K. Kainer,et al.  Magnesium alloys and technology , 2003 .

[31]  R. Mévrel,et al.  A numerical inverse method for calculating the interdiffusion coefficients along a diffusion path in ternary systems , 2002 .

[32]  J. Ågren Calculation of phase diagrams: Calphad , 1996 .

[33]  J. Ågren,et al.  Models for numerical treatment of multicomponent diffusion in simple phases , 1992 .

[34]  K. Laidler The development of the Arrhenius equation , 1984 .

[35]  J. Kirkaldy,et al.  DIFFUSION IN MULTICOMPONENT METALLIC SYSTEMS: IX. INTRINSIC DIFFUSION BEHAVIOR AND THE KIRKENDALL EFFECT IN TERNARY SUBSTITUTIONAL SOLUTIONS , 1966 .

[36]  J. S. Kirkaldy,et al.  DIFFUSION IN MULTICOMPONENT METALLIC SYSTEMS: VII. SOLUTIONS OF THE MULTICOMPONENT DIFFUSION EQUATIONS WITH VARIABLE COEFFICIENTS , 1963 .

[37]  J. Kirkaldy DIFFUSION IN MULTICOMPONENT METALLIC SYSTEMS , 1957 .

[38]  O. Redlich,et al.  Algebraic Representation of Thermodynamic Properties and the Classification of Solutions , 1948 .