ORBITAL DECAY OF HOT JUPITERS DUE TO NONLINEAR TIDAL DISSIPATION WITHIN SOLAR-TYPE HOSTS

We study the orbital evolution of hot Jupiters due to the excitation and damping of tidally driven g-modes within solar-type host stars. Linearly resonant g-modes (the dynamical tide) are driven to such large amplitudes in the stellar core that they excite a sea of other g-modes through weakly nonlinear interactions. By solving the dynamics of large networks of nonlinearly coupled modes, we show that the nonlinear dissipation rate of the dynamical tide is several orders of magnitude larger than the linear dissipation rate. We find stellar tidal quality factors Q * ′ ≃ ?> 105–106 for systems with planet mass M p ≳ 0.5 M J ?> and orbital period P ≲ 2 days , ?> which implies that such systems decay on timescales that are small compared to the main-sequence lifetime of their solar-type hosts. According to our results, there are ≃ 10 ?> currently known exoplanetary systems, including WASP-19b and HAT-P-36-b, with orbital decay timescales shorter than a Gyr. Rapid, tidally induced orbital decay may explain the observed paucity of planets with M p ≳ M J ?> and P < 2 days ?> around solar-type hosts and could generate detectable transit-timing variations in the near future.

[1]  Antonino Francesco Lanza,et al.  Kepler-423b: a half-Jupiter mass planet transiting a very old solar-like star , 2014, 1409.8245.

[2]  Joshua N. Winn,et al.  The Occurrence and Architecture of Exoplanetary Systems , 2014, 1410.4199.

[3]  G. Ogilvie Tidal Dissipation in Stars and Giant Planets , 2014, 1406.2207.

[4]  S. Teitler,et al.  WHY IS THERE A DEARTH OF CLOSE-IN PLANETS AROUND FAST-ROTATING STARS? , 2014, 1403.5860.

[5]  F. Rasio,et al.  PLANETS ON THE EDGE , 2014, 1403.1870.

[6]  J. Koppenhoefer,et al.  WTS-2 b: a hot Jupiter orbiting near its tidal destruction radius around a K dwarf , 2014, 1402.5416.

[7]  A. Barker,et al.  Non-linear evolution of the elliptical instability in the presence of weak magnetic fields , 2013, 1309.0108.

[8]  D. Lai,et al.  Viscoelastic tidal dissipation in giant planets and formation of hot Jupiters through high-eccentricity migration , 2013, 1308.4968.

[9]  Ryan M. O'Leary,et al.  It takes a village to raise a tide: non-linear multiple-mode coupling and mode identification in KOI-54 , 2013, 1308.0016.

[10]  S. G. Sousa,et al.  New and updated stellar parameters for 90 transit hosts - The effect of the surface gravity , 2013, 1309.1998.

[11]  T. Mazeh,et al.  STELLAR ROTATION PERIODS OF THE KEPLER OBJECTS OF INTEREST: A DEARTH OF CLOSE-IN PLANETS AROUND FAST ROTATORS , 2013, 1308.1845.

[12]  A. Zimmerman,et al.  THE STABILITY OF TIDALLY DEFORMED NEUTRON STARS TO THREE- AND FOUR-MODE COUPLING , 2013, 1307.2890.

[13]  B. Jackson,et al.  CONSTRAINING TIDAL DISSIPATION IN STARS FROM THE DESTRUCTION RATES OF EXOPLANETS , 2012, 1205.1803.

[14]  Tokyo Institute of Technology,et al.  HAT-P-34b–HAT-P-37b: FOUR TRANSITING PLANETS MORE MASSIVE THAN JUPITER ORBITING MODERATELY BRIGHT STARS , 2012, 1201.0659.

[15]  E. Quataert,et al.  NONLINEAR TIDES IN CLOSE BINARY SYSTEMS , 2011, 1107.0946.

[16]  A. Barker,et al.  Stability analysis of a tidally excited internal gravity wave near the centre of a solar-type star , 2011, 1106.5001.

[17]  D. Sasselov,et al.  TIDAL EVOLUTION OF CLOSE-IN EXTRASOLAR PLANETS: HIGH STELLAR Q FROM NEW THEORETICAL MODELS , 2011, 1102.3187.

[18]  A. Barker Three-dimensional simulations of internal wave breaking and the fate of planets around solar-type stars , 2011, 1102.0857.

[19]  D. Queloz,et al.  ON THE ORBIT OF THE SHORT-PERIOD EXOPLANET WASP-19b , 2011, 1101.3293.

[20]  A. Barker,et al.  On internal wave breaking and tidal dissipation near the centre of a solar-type star , 2010, 1001.4009.

[21]  A. Collier Cameron,et al.  The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 μm , 2009, 0911.5087.

[22]  R. G. West,et al.  WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED , 2010, 1001.0403.

[23]  R. Greenberg,et al.  OBSERVATIONAL EVIDENCE FOR TIDAL DESTRUCTION OF EXOPLANETS , 2009, 0904.1170.

[24]  L. Hebb,et al.  Improved parameters for the transiting hot Jupiters WASP-4b and WASP-5b , 2008, 0812.1998.

[25]  Ruxandra Bondarescu,et al.  Spinning down newborn neutron stars: nonlinear development of the r-mode instability , 2008, 0809.3448.

[26]  C. Moutou,et al.  Transiting exoplanets from the CoRoT space mission - II. CoRoT-Exo-2b: a transiting planet around an active G star , 2008, 0803.3207.

[27]  R. Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2007, Proceedings of the International Astronomical Union.

[28]  Nuno C. Santos,et al.  Extrasolar Planets: Statistical properties of exoplanets , 2007 .

[29]  D. Lin,et al.  Tidal Dissipation in Rotating Solar-Type Stars , 2007, astro-ph/0702492.

[30]  S. Meibom,et al.  A Robust Measure of Tidal Circularization in Coeval Binary Populations: The Solar-Type Spectroscopic Binary Population in the Open Cluster M35 , 2004, astro-ph/0412147.

[31]  B. Paxton EZ to Evolve ZAMS Stars: A Program Derived from Eggleton’s Stellar Evolution Code , 2004, astro-ph/0405130.

[32]  Saul A. Teukolsky,et al.  Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars , 2001 .

[33]  P. Goldreich,et al.  Gravity Modes in ZZ Ceti Stars. IV. Amplitude Saturation by Parametric Instability , 2000, astro-ph/0003163.

[34]  Eric S. Dickson,et al.  Dynamical Tide in Solar-Type Binaries , 1998, astro-ph/9801289.

[35]  J. Papaloizou,et al.  On the Tidal Interaction of a Solar-Type Star with an Orbiting Companion: Excitation of g-Mode Oscillation and Orbital Evolution , 1998, astro-ph/9801280.

[36]  Pawan Kumar,et al.  Nonlinear Damping of Oscillations in Tidal-Capture Binaries , 1995, astro-ph/9509112.

[37]  Steven Soter,et al.  Q in the solar system , 1966 .