Synthesis of Air-Stable CdSe/ZnS Core–Shell Nanoplatelets with Tunable Emission Wavelength

In the past few years, several protocols have been reported on the synthesis of CdSe nanoplatelets with narrow photoluminescence (PL) spectrum, high PL quantum efficiency, and short exciton lifetime. The corresponding core/shell nanoplatelets are however still mostly based on CdSe/CdS, which possess an extended lifetime and a strong red shift of the band-edge absorption and emission, in accordance with a quasi-type-II band alignment. Here we report on a robust synthesis procedure to grow a ZnS shell around CdSe nanoplatelets at moderate temperatures of 100–150 °C, to improve the optical properties of CdSe nanoplatelets via a type-I core/shell heterostructure. The shell growth is performed under ambient atmosphere, in either toluene or 1,2-dichlorobenzene. The variation of the shell thickness induces a continuous red shift of the PL peak, eventually reaching 611 nm. The PL quantum efficiency is increased compared to the original CdSe cores, with values up to 60% depending on the shell thickness. High-resol...

[1]  Chun-yang Zhang,et al.  Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. , 2015, Chemical reviews.

[2]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[3]  M. Képénekian,et al.  Electronic surface states and dielectric self-energy profiles in colloidal nanoscale platelets of CdSe. , 2014, Physical chemistry chemical physics : PCCP.

[4]  A. Orlandini,et al.  Reactivity of the triethylphosphine-carbon disulfide adduct (Et3P.CS2) toward cobalt(II) cations in the presence of the tris (tertiary phosphines) triphos and etriphos. X-ray crystal structure of the complex [(etriphos)Co(S2C(H)PEt3)](BPh4)2 , 1982 .

[5]  J. Q. Grim,et al.  A Sustainable Future for Photonic Colloidal Nanocrystals , 2015 .

[6]  J. Q. Grim,et al.  Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route , 2014 .

[7]  J. Xue,et al.  Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets. , 2016, Nanoscale.

[8]  P. Kambhampati Multiexcitons in Semiconductor Nanocrystals: A Platform for Optoelectronics at High Carrier Concentration , 2012 .

[9]  B. Dubertret,et al.  Colloidal nanoplatelets with two-dimensional electronic structure. , 2011, Nature materials.

[10]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[11]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[12]  Ali Hossain Khan,et al.  Shape control of zincblende CdSe nanoplatelets. , 2016, Chemical communications.

[13]  Sandrine Ithurria,et al.  Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. , 2012, Journal of the American Chemical Society.

[14]  C. George,et al.  Anhydrous Dithiocarbamates. Potential Precursors to Alkaline Earth Sulfide Materials , 1996 .

[15]  Y. Bando,et al.  Statistically Analyzed Photoresponse of Elastically Bent CdS Nanowires Probed by Light-Compatible In Situ High-Resolution TEM. , 2016, Nano letters.

[16]  V. Klimov,et al.  Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. , 2013, ACS nano.

[17]  Savas Delikanli,et al.  Amplified spontaneous emission and lasing in colloidal nanoplatelets. , 2014, ACS nano.

[18]  Bryant Hydrogenic impurity states in quantum-well wires: Shape effects. , 1985, Physical review. B, Condensed matter.

[19]  J. L. Movilla,et al.  Image charges in spherical quantum dots with an off-centered impurity: algorithm and numerical results , 2005, Comput. Phys. Commun..

[20]  Xiaogang Peng,et al.  Bright and Stable Purple/Blue Emitting CdS/ZnS Core/Shell Nanocrystals Grown by Thermal Cycling Using a Single-Source Precursor , 2010 .

[21]  Cherie R. Kagan,et al.  Building devices from colloidal quantum dots , 2016, Science.

[22]  Roberto Cingolani,et al.  Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. , 2014, Nature nanotechnology.

[23]  Yang Ren,et al.  Structure Identification of Two-Dimensional Colloidal Semiconductor Nanocrystals with Atomic Flat Basal Planes. , 2015, Nano letters.

[24]  P. Lawaetz,et al.  Valence-Band Parameters in Cubic Semiconductors , 1971 .

[25]  Benoit Dubertret,et al.  Self-assembly of CdSe nanoplatelets into giant micrometer-scale needles emitting polarized light. , 2014, Nano letters.

[26]  Ulrike Woggon,et al.  Linear Absorption in CdSe Nanoplates: Thickness and Lateral Size Dependency of the Intrinsic Absorption , 2015 .

[27]  Benoit Dubertret,et al.  Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. , 2015, Accounts of chemical research.

[28]  Cherie R. Kagan,et al.  Prospects of nanoscience with nanocrystals. , 2015, ACS nano.

[29]  Peter D Dahlberg,et al.  Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets. , 2015, ACS nano.

[30]  Klein,et al.  Optical properties of zinc-blende CdSe and ZnxCd1-xSe films grown on GaAs. , 1994, Physical review. B, Condensed matter.

[31]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[32]  I. Moreels,et al.  Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets , 2015 .

[33]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[34]  Jin-Kyu Lee,et al.  Thermal decomposition mechanism of single-molecule precursors forming metal sulfide nanoparticles. , 2010, Journal of the American Chemical Society.

[35]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[36]  A. D. Yoffe,et al.  Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems , 1993 .

[37]  S. Jana,et al.  CdSe Nanoplatelets: Living Polymers. , 2016, Angewandte Chemie.

[38]  I. Moreels,et al.  Reversed oxygen sensing using colloidal quantum wells towards highly emissive photoresponsive varnishes , 2015, Nature Communications.

[39]  Jaehoon Lim,et al.  Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. , 2016, Chemical reviews.

[40]  Shlomo Efrima,et al.  Synthesis of high-quality metal sulfide nanoparticles from alkyl xanthate single precursors in alkylamine solvents , 2003 .

[41]  W. Buhro,et al.  Large Exciton Energy Shifts by Reversible Surface Exchange in 2D II-VI Nanocrystals. , 2015, Journal of the American Chemical Society.

[42]  Hui Zhang,et al.  Picosecond energy transfer and multiexciton transfer outpaces Auger recombination in binary CdSe nanoplatelet solids. , 2015, Nature materials.

[43]  I. Moreels,et al.  Strong Exciton-Photon Coupling with Colloidal Nanoplatelets in an Open Microcavity. , 2016, Nano letters.

[44]  Alexander A. Balandin,et al.  Exciton states and optical transitions in colloidal CdS quantum dots: Shape and dielectric mismatch effects , 2002 .

[45]  Allan,et al.  Screening in Semiconductor Nanocrystallites and Its Consequences for Porous Silicon. , 1995, Physical review letters.

[46]  Takagahara,et al.  Excitonic and nonlinear-optical properties of dielectric quantum-well structures. , 1989, Physical review. B, Condensed matter.

[47]  T. Mirkovic,et al.  Emergent Properties Resulting from Type-II Band Alignment in Semiconductor Nanoheterostructures , 2011 .

[48]  P. G. Bolcatto,et al.  Shape and dielectric mismatch effects in semiconductor quantum dots , 1999 .

[49]  B. Lounis,et al.  Spectroscopy of single nanocrystals. , 2014, Chemical Society reviews.

[50]  Benoit Dubertret,et al.  Core/shell colloidal semiconductor nanoplatelets. , 2012, Journal of the American Chemical Society.

[51]  Benoit Dubertret,et al.  Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. , 2013, Nano letters.

[52]  A. Rodina,et al.  Effect of dielectric confinement on optical properties of colloidal nanostructures , 2016 .

[53]  Martin Hÿtch,et al.  Quantitative measurement of displacement and strain fields from HREM micrographs , 1998 .

[54]  Andrei Schliwa,et al.  Electronic structure and exciton-phonon interaction in two-dimensional colloidal CdSe nanosheets. , 2012, Nano letters.

[55]  Andreas Kornowski,et al.  CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals , 2004 .

[56]  R. Curry,et al.  Lead sulphide nanocrystal photodetector technologies , 2016, Nature Photonics.

[57]  Hua Zhang,et al.  Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. , 2016, Nature chemistry.

[58]  Alf Mews,et al.  Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. , 2005, Journal of the American Chemical Society.

[59]  Mikhail Artemyev,et al.  CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central CdSe region through epitaxially grown CdS wings. , 2013, Journal of the American Chemical Society.

[60]  Dmitri V Talapin,et al.  Low-threshold stimulated emission using colloidal quantum wells. , 2013, Nano letters.

[61]  I. Moreels,et al.  Colloidal nanoplatelets: Energy transfer is speeded up in 2D. , 2015, Nature materials.

[62]  C. B. Duke,et al.  Space-Charge Effects on Electron Tunneling , 1966 .

[63]  T. Lian,et al.  Size-Independent Exciton Localization Efficiency in Colloidal CdSe/CdS Core/Crown Nanosheet Type-I Heterostructures. , 2016, ACS nano.

[64]  Yizheng Jin,et al.  Solution-processed, high-performance light-emitting diodes based on quantum dots , 2014, Nature.

[65]  Benoit Dubertret,et al.  Type-II CdSe/CdTe core/crown semiconductor nanoplatelets. , 2014, Journal of the American Chemical Society.

[66]  Mark Hyunpong Jhon,et al.  Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution , 2015, Nature Communications.

[67]  Otfried Madelung,et al.  II-VI and I-VII compounds, semimagnetic compounds , 1999 .