Introduction

[1]  Yuan Liu,et al.  Fabrication, properties, and applications of open-cell aluminum foams: A review , 2021 .

[2]  D. Bhattacharyya,et al.  Nanoporous metal–polymer composite membranes for organics separations and catalysis , 2020, Journal of materials research.

[3]  D. Dunand,et al.  Structure–processing relationships of freeze-cast iron foams fabricated with various solidification rates and post-casting heat treatment , 2020, Journal of Materials Research.

[4]  M. Ge,et al.  3D Morphology of Bimodal Porous Copper with Nano-Sized and Micron-Sized Pores to Enhance Transport Properties for Functional Applications , 2020 .

[5]  Z. Ren,et al.  Catching and killing of airborne SARS-CoV-2 to control spread of COVID-19 by a heated air disinfection system , 2020, Materials Today Physics.

[6]  Ying Zhao,et al.  Dynamic mechanical properties of closed-cell aluminum foams with uniform and graded densities , 2020, Journal of Materials Research.

[7]  H. Nakajima Open-channel metals fabricated by the removal of template wires , 2020, Journal of Materials Research.

[8]  Bowen Liu,et al.  Mechanical properties and damping properties of carbon nanotube-reinforced foam aluminum with small aperture , 2020, Journal of Materials Research.

[9]  Farhad Saba,et al.  Fabrication, mechanical property and in vitro bioactivity of hierarchical macro-/micro-/nano-porous titanium and titanium molybdenum alloys , 2020, Journal of Materials Research.

[10]  David L. Poerschke,et al.  Temperature-dependent mechanical behavior of three-dimensionally ordered macroporous tungsten , 2020, Journal of Materials Research.

[11]  Haomin Liu,et al.  Mechanism of coarsening and deformation behavior of nanoporous Cu with varying relative density , 2020, Journal of Materials Research.

[12]  Yulai Gao,et al.  Influence of dealloying solution on the microstructure of nanoporous copper through chemical dealloying of Al_75Cu_25 ribbons , 2020, Journal of Materials Research.

[13]  E. Duoss,et al.  Three-dimensional hierarchical nanoporous copper via direct ink writing and dealloying , 2020 .

[14]  N. Koratkar,et al.  Nanoporous metals from thermal decomposition of transition metal dichalcogenides , 2020 .

[15]  M. Ge,et al.  Designing Multiscale Porous Metal by Simple Dealloying with 3D Morphological Evolution Mechanism Revealed via X-ray Nano-tomography. , 2019, ACS applied materials & interfaces.

[16]  Martin Leary,et al.  SLM lattice structures: Properties, performance, applications and challenges , 2019 .

[17]  Hanfei Yan,et al.  Bi-continuous pattern formation in thin films via solid-state interfacial dealloying studied by multimodal characterization , 2019, Materials Horizons.

[18]  H. Nakajima Through Hole Aluminum Fabricated by the Extraction of Lubricated Metallic Wires , 2019, Metallurgical and Materials Transactions A.

[19]  N. Nomura,et al.  Hierarchical Nanoporous Copper Architectures via 3D Printing Technique for Highly Efficient Catalysts. , 2019, Small.

[20]  T. Wada,et al.  Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography , 2018, Nano Energy.

[21]  Juergen Biener,et al.  Toward digitally controlled catalyst architectures: Hierarchical nanoporous gold via 3D printing , 2018, Science Advances.

[22]  E. Seker,et al.  Voltage‐Gated Closed‐Loop Control of Small‐Molecule Release from Alumina‐Coated Nanoporous Gold Thin Film Electrodes , 2018 .

[23]  Congcheng Wang,et al.  Reduction-Induced Decomposition: Spontaneous Formation of Monolithic Nanoporous Metals of Tunable Structural Hierarchy and Porosity , 2018 .

[24]  K. Pałka,et al.  Porous Titanium Implants: A Review , 2018 .

[25]  Liangchi Zhang,et al.  A review on metallic porous materials: pore formation, mechanical properties, and their applications , 2018 .

[26]  A. Hirata,et al.  Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying , 2018, Nature Communications.

[27]  P. Voorhees,et al.  On the topological, morphological, and microstructural characterization of nanoporous metals , 2018 .

[28]  J. Biener,et al.  Nanoporous Metals with Structural Hierarchy: A Review , 2017 .

[29]  A. Karma,et al.  Kinetics and morphological evolution of liquid metal dealloying , 2016 .

[30]  T. Wada,et al.  Evolution of a bicontinuous nanostructure via a solid-state interfacial dealloying reaction , 2016 .

[31]  Wai Yee Yeong,et al.  Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs , 2016, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[32]  Ke Yang,et al.  New preparation method of micron porous copper through physical vacuum dealloying of Cu–Zn alloys , 2016 .

[33]  A. Karma,et al.  Topology-generating interfacial pattern formation during liquid metal dealloying , 2015, Nature Communications.

[34]  M. Mehrali,et al.  A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing , 2015, Science and technology of advanced materials.

[35]  Howon Lee,et al.  Ultralight, ultrastiff mechanical metamaterials , 2014, Science.

[36]  K. Sieradzki,et al.  Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. , 2013, Nature materials.

[37]  John Banhart,et al.  Light‐Metal Foams—History of Innovation and Technological Challenges , 2013 .

[38]  J. Banhart,et al.  Recent Trends in Aluminum Foam Sandwich Technology , 2012 .

[39]  Chang Ming Li,et al.  Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. , 2012, Chemical Society reviews.

[40]  P. Voorhees,et al.  Structural evolution of nanoporous gold during thermal coarsening , 2012 .

[41]  S. Arwade,et al.  Steel foam for structures: A review of applications, manufacturing and material properties , 2012 .

[42]  M. Demkowicz,et al.  Coarsening by network restructuring in model nanoporous gold , 2011 .

[43]  L. Valdevit,et al.  Ultralight Metallic Microlattices , 2011, Science.

[44]  T. Wada,et al.  Dealloying by metallic melt , 2011 .

[45]  Richard Dashwood,et al.  Titanium foams for biomedical applications: a review , 2010 .

[46]  J. Kysar,et al.  Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties , 2009 .

[47]  John Banhart,et al.  Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications , 2008 .

[48]  John Banhart,et al.  Porous Metals and Metallic Foams: Current Status and Recent Developments , 2008 .

[49]  S. Stupp,et al.  Porous NiTi for bone implants: a review. , 2008, Acta biomaterialia.

[50]  J. Banhart Metal Foams: Production and Stability , 2006 .

[51]  S. Son,et al.  Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. , 2006, Journal of the American Chemical Society.

[52]  David C. Dunand,et al.  Processing of Titanium Foams , 2004 .

[53]  A. Karma,et al.  Evolution of nanoporosity in dealloying , 2001, Nature.

[54]  K. Sieradzki,et al.  Mechanisms and Morphology Evolution in Dealloying , 2013 .

[55]  L. Salvo,et al.  Creep of replicated microcellular aluminium , 2011 .

[56]  J. Banhart Metal Foams—from Fundamental Research to Applications , 2007 .

[57]  J. Banhart Manufacture, characterisation and application of cellular metals and metal foams , 2001 .