The photodissociation of nitromethane at 193 nm

The dissociation of nitromethane following the excitation of the π* ← π transition at 193 nm has been investigated by two independent and complementary techniques, product emission spectroscopy and molecular beam photofragment translational energy spectroscopy. The primary process is shown to be cleavage of the C–N bond to yield CH3 and NO2 radicals. The translational energy distribution for this chemical process indicates that there are two distinct mechanisms by which CH3 and NO2 radicals are produced. The dominant mechanism releasing a relatively large fraction of the total available energy to translation probably gives NO2 radicals in a vibrationally excited 2B2 state. When dissociated, other nitroalkanes exhibit the same emission spectrum as CH3NO2, suggesting little transfer of energy from the excited NO2 group to the alkyl group during dissociation for the dominant mechanism. This conclusion is supported by the apparent loss of the slow NO2 product in the molecular beam studies to unimolecular diss...

[1]  Yuan-Pern Lee,et al.  Photofragmentation of CH3I: Vibrational distribution of the CH3 fragment , 1981 .

[2]  Yaochun Shen,et al.  Competition between atomic and molecular chlorine elimination in the infrared multiphoton dissociation of CF2Cl2 , 1982 .

[3]  A. Kuppermann,et al.  Variable angle electron-impact excitation of nitromethane , 1980 .

[4]  L. E. Harris The lower electronic states of nitrite and nitrate ion, nitromethane, nitramide, nitric acid, and nitrate esters , 1973 .

[5]  V. M. Donnelly,et al.  Fluorescence lifetime studies of NO2. IV. Temperature dependence of fluorescence spectra and of collisional quenching of fluorescence , 1980 .

[6]  J. Rabalais Photoelectron Spectroscopic Investigation of the Electronic Structure of Nitromethane and Nitrobenzene , 1972 .

[7]  K. Wilson,et al.  Molecular alignment and photofragment spectroscopy , 1975 .

[8]  K. Spears,et al.  Vibrationally excited NO2 from CH3NO2 and 2-C3H7NO2 photodissociation , 1978 .

[9]  R. Norrish,et al.  The photolysis and pyrolysis of nitromethane and methyl nitrite , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  E. Grant,et al.  Multiphoton ionization of NO2: Spectroscopy and dynamics , 1981 .

[11]  R. Zare,et al.  Spectral atlas of nitrogen dioxide, 5530 to 6480 Å , 1978 .

[12]  M. Marrone,et al.  Picosecond UV photolysis and laser-induced fluorescence probing of gas-phase nitromethane , 1982 .

[13]  G. Geiseler,et al.  Schwingungsspektren homologer und stellungsisomerer n‐Alkanderivate 4. Mitteilung: Infrarot‐ und ramanspektroskopische Untersuchungen an homologen geradkettigen Nitroalkanen , 1964 .

[14]  A. Duncan,et al.  Fluorescence of Nitrogen Dioxide , 1954 .

[15]  Hideo Okabe,et al.  Photochemistry of small molecules , 1978 .

[16]  R. P. Hosteny,et al.  The electronic structure of nitrogen dioxide. I. Multiconfiguration self‐consistent‐field calculation of the low‐lying electronic states , 1975 .

[17]  H. Jerrard Spectral atlas of nitrogen dioxide: D.K. Hsu, D.L. Monts, R.N. Zare Academic, 1978, pp 638 + x, $55.50 , 1981 .

[18]  M. Kawasaki,et al.  Photodissociation of molecular beams of aryl halides: Translational energy distribution of the fragments , 1977 .

[19]  A. Cox,et al.  Microwave spectrum and structure of nitromethane , 1972 .

[20]  Atmospheric photodissociation lifetimes for nitromethane, methyl nitrite, and methyl nitrate , 1980 .

[21]  S. Leone,et al.  Photofragmentation dynamics of CH3I at 248 and 266 nm: Vibrational distributions in the CH3(ν2) ‘‘umbrella’’ mode , 1982 .

[22]  Arthur Fontijn,et al.  Absolute Quantum Yield Measurements of the NO–O Reaction and Its Use as a Standard for Chemiluminescent Reactions , 1964 .

[23]  B. Bederson,et al.  Atomic and Molecular Polarizabilities-A Review of Recent Advances , 1978 .

[24]  C. G. Stevens,et al.  Analysis of polyatomic spectra using tunable laser-induced fluorescence: applications to the NO2 visible band system , 1973 .

[25]  H. Akimoto,et al.  Emission of NO2* formed in the photodissociation of N2O4 , 1979 .

[26]  K. L. Mcewen Electronic Structures and Spectra of Nitromethane and Nitrogen Dioxide , 1960 .

[27]  K. Wilson,et al.  Triatomic Photofragment Spectra. II. Angular Distributions from NO2 Photodissociation , 1972 .

[28]  S. Nagakura Ultra-violet absorption spectra and π-electron structures of nitromethane and the nitromethyl anion , 1960 .

[29]  S. Schwartz,et al.  Kinetics of Nitrogen Dioxide Fluorescence , 1969 .

[30]  A. Sudbø THREE AND FOUR CENTER ELIMINATION OF HC1 IN THE MULTIPHOTON DISSOCIATION OF HALOGENATED HYDROCARBONS , 1978 .

[31]  V. M. Donnelly,et al.  Fluorescence lifetime studies of NO2. II. Dependence of the perturbed 2B2 state lifetimes on excitation energy , 1978 .

[32]  J. D. Mcdonald,et al.  Molecular Beam Reactive Scattering Apparatus with Electron Bombardment Detector , 1969 .

[33]  Ahsan Khan,et al.  The electronic structure of NO2. II. The ? 2B2← ? 2A1 and ? 2B1←? 2A1 absorption systems , 1976 .

[34]  H. Broida,et al.  Spectral Study of NO2 Fluorescence Excited by 11 Lines of Argon and Krypton Ion Lasers , 1969 .

[35]  K. Honda,et al.  Photolysis of Nitromethane in Gas Phase at 313 nm , 1972 .

[36]  T. Ohta,et al.  Valence electron bands in the gas-phase x-ray photoelectron spectra of acetonitrile and nitromethane , 1974 .