Saddlepoint approximations for the doubly noncentral t

Closed-form approximations for the density and cumulative distribution function of the doubly noncentral t distribution are developed based on saddlepoint methods. They exhibit remarkable accuracy throughout the entire support of the distribution and are vastly superior to existing approximations. An application in finance is considered which capitalizes on the enormous increase in computational speed.

[1]  R. Routledge,et al.  On the relationship between two asymptotic expansions for the distribution of sample mean and its applications , 1997 .

[2]  T. DiCiccio,et al.  Approximations of marginal tail probabilities for a class of smooth functions with applications to Bayesian and conditional inference , 1991 .

[3]  H. Robbins The Distribution of Student's $t$ When the Population Means are Unequal , 1948 .

[4]  Marc S. Paolella,et al.  Accurate value-at-risk forecasting based on the normal-GARCH model , 2006, Comput. Stat. Data Anal..

[5]  Marc S. Paolella,et al.  Conditional density and value‐at‐risk prediction of Asian currency exchange rates , 2000 .

[6]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[7]  R. Berk,et al.  Continuous Univariate Distributions, Volume 2 , 1995 .

[8]  Cathy W. S. Chen,et al.  Comparison of nonnested asymmetric heteroskedastic models , 2006, Comput. Stat. Data Anal..

[9]  Francesco Lisi Testing asymmetry in financial time series , 2007 .

[10]  Ronald W. Butler,et al.  Calculating the density and distribution function for the singly and doubly noncentral F , 2002, Stat. Comput..

[11]  Thierry Ané,et al.  An analysis of the flexibility of Asymmetric Power GARCH models , 2006, Comput. Stat. Data Anal..

[12]  Svetlozar T. Rachev,et al.  Unconditional and Conditional Distributional Models for the Nikkei Index , 1998 .

[13]  D. Straumann Estimation in Conditionally Herteroscedastic Time Series Models , 2004 .

[14]  H. Scheffé,et al.  The Analysis of Variance , 1960 .

[15]  F. Palm 7 GARCH models of volatility , 1996 .

[16]  Andrew T. A. Wood,et al.  Laplace approximations for hypergeometric functions with matrix argument , 2002 .

[17]  P. Praetz,et al.  The Distribution of Share Price Changes , 1972 .

[18]  P. Patnaik THE NON-CENTRAL χ2- AND F-DISTRIBUTIONS AND THEIR APPLICATIONS , 1949 .

[19]  Marakatha Krishnan,et al.  The Moments of a Doubly Noncentral t-Distribution , 1967 .

[20]  Marakatha Krishnan Series Representations of the Doubly Noncentral t-Distribution , 1968 .

[21]  S. Choudhury,et al.  SERIES REPRESENTATION OF DOUBLY NONCENTRAL t DISTRIBUTION BY USE OF THE MELLIN INTEGRAL TRANSFORM , 2002 .

[22]  Anil K. Bera,et al.  A Test for Symmetry with Leptokurtic Financial Data , 2005 .

[23]  Byron J. T. Morgan,et al.  Applied Stochastic Modelling , 2001 .

[24]  K. Subrahmaniam,et al.  On the doubly noncentral t distribution , 1991 .

[25]  Marc S. Paolella,et al.  Value-at-Risk Prediction: A Comparison of Alternative Strategies , 2005 .

[26]  K. Dowd Measuring Market Risk , 2002 .

[27]  G. S. Mudholkar,et al.  A simple approximation for the doubly noncentral t-distribution , 1976 .

[28]  H. Daniels Saddlepoint Approximations in Statistics , 1954 .

[29]  S. Rice,et al.  Saddle point approximation for the distribution of the sum of independent random variables , 1980, Advances in Applied Probability.

[30]  Campbell R. Harvey,et al.  Autoregressive conditional skewness , 1999 .

[31]  G. A. Young,et al.  Saddlepoint approximation for the studentized mean, with an application to the bootstrap , 1991 .