Plasmonic green nanolaser based on a metal-oxide-semiconductor structure.

Realization of smaller and faster coherent light sources is critically important for the emerging applications in nanophotonics and information technology. Semiconductor lasers are arguably the most suitable candidate for such purposes. However, the minimum size of conventional semiconductor lasers utilizing dielectric optical cavities for sustaining laser oscillation is ultimately governed by the diffraction limit (∼(λ/2n)(3) for three-dimensional (3D) cavities, where λ is the free-space wavelength and n is the refractive index). Here, we demonstrate the 3D subdiffraction-limited laser operation in the green spectral region based on a metal-oxide-semiconductor (MOS) structure, comprising a bundle of green-emitting InGaN/GaN nanorods strongly coupled to a gold plate through a SiO(2) dielectric nanogap layer. In this plasmonic nanocavity structure, the analogue of MOS-type "nanocapacitor" in nanoelectronics leads to the confinement of the plasmonic field into a 3D mode volume of 8.0 × 10(-4) μm(3) (∼0.14(λ/2n)(3)).

[1]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[2]  Yeshaiahu Fainman,et al.  Room-temperature subwavelength metallo-dielectric lasers , 2010 .

[3]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[4]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[5]  S. Gwo,et al.  Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources , 2011 .

[6]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[7]  M. Stockman Nanoplasmonics: The physics behind the applications , 2011 .

[8]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[9]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[10]  Yoshinori Tanaka,et al.  GaN Photonic-Crystal Surface-Emitting Laser at Blue-Violet Wavelengths , 2008, Science.

[11]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[12]  Yasuhiko Arakawa,et al.  Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap , 2011 .

[13]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[14]  S. Gwo,et al.  Surface-Plasmon-Mediated Photoluminescence Enhancement from Red-Emitting InGaN Coupled with Colloidal Gold Nanocrystals , 2010 .

[15]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[16]  Takashi Mukai,et al.  Surface-plasmon-enhanced light emitters based on InGaN quantum wells , 2004, Nature materials.

[17]  A. F. J. Levi,et al.  Whispering-gallery mode microdisk lasers , 1992 .

[18]  A. Hohenau,et al.  Silver nanowires as surface plasmon resonators. , 2005, Physical review letters.

[19]  S. Gwo,et al.  InGaN/GaN nanorod array white light-emitting diode , 2010 .

[20]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[21]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[22]  C. Ning,et al.  Peculiar features of confinement factors in a metal-semiconductor waveguide , 2010 .

[23]  Hyeyoung Ahn,et al.  Strong green photoluminescence from InxGa1-xN/GaN nanorod arrays. , 2009, Optics express.

[24]  Ming C. Wu,et al.  Subwavelength Metal-optic Semiconductor Nanopatch Lasers References and Links , 2022 .

[25]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[26]  S. Gwo,et al.  Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region. , 2008, Optics express.

[27]  Federico Capasso,et al.  Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation , 2008 .

[28]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[29]  D. Vanmaekelbergh,et al.  Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. , 2006, Nano letters.

[30]  S. L. Prosvirnin,et al.  Coherent meta-materials and the lasing spaser , 2008, 0802.2519.

[31]  Shuji Nakamura,et al.  Future of group-III nitride semiconductor green laser diodes [Invited] , 2010 .

[32]  S. Gwo,et al.  Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy , 2006 .

[33]  K. Katayama,et al.  531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {202̄1} Free-Standing GaN Substrates , 2009 .

[34]  Philippe Regreny,et al.  Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. , 2010, Nano letters.

[35]  S. Nakamura,et al.  The dawn of miniature green lasers. , 2009, Scientific American.

[36]  Mark I. Stockman,et al.  The spaser as a nanoscale quantum generator and ultrafast amplifier , 2009, 0908.3559.