A data‐adaptive spatial resolution method for three‐dimensional inversion of triaxial borehole electromagnetic measurements

We develop a novel adaptive inversion technique: Data-adaptive Spatial Resolution Inversion (DSRI) method. DSRI eliminates the need to select parameterization prior to inversion. Instead, one performs a hierarchical search for the correct parameterization while solving a sequence of inverse problems with an increasing dimension of parameterization. A parsimonious approach to the inverse problem involves the application of the same refinement applied all over the spatial domain. Such an approach may lead to over-parameterization, subsequently, to unrealistic conductivity estimates and excessive computational work. With DSRI technique, the new parameterization at an arbitrary stage of inversion sequence is allocated such that new degrees of freedom are not necessarily introduced all over the spatial domain of the electromagnetic problem. The aim is to allocate new degrees of freedom only where it is warranted by the data. Inversion results confirm that DSRI constitutes a robust technique for efficient multiparameter inversion of multicomponent electromagnetic measurements.

[1]  Lev Tabarovsky,et al.  Determination of relative angles and anisotropic resistivity using multicomponent induction logging data , 2004 .

[2]  Mojdeh Delshad,et al.  Assessment of In-Situ Hydrocarbon Saturation in the Presence of Deep Invasion and Highly Saline Connate Water , 2004 .

[3]  Alberto G. Mezzatesta,et al.  2D anisotropic inversion of multicomponent induction logging data , 2001 .

[4]  Baker Atlas,et al.  A fast inversion method for multicomponent induction log data , 2001 .

[5]  J. H. Moran,et al.  SOME EFFECTS OF FORMATION ANISOTROPY ON RESISTIVITY MEASUREMENTS IN BOREHOLES , 1958 .

[6]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[7]  Carlos Torres-Verdín,et al.  Finite-difference simulation of borehole EM measurements in 3D anisotropic media using coupled scalar-vector potentials , 2006 .

[8]  J. Klein,et al.  The Petrophysics Of Electrically Anisotropic Reservoirs , 1995 .

[9]  Michael S. Zhdanov,et al.  Focusing Inversion of Tensor Induction Logging Data In Anisotropic Formations And Deviated Well , 2001 .

[10]  David L. Alumbaugh,et al.  A Transversely Isotropic 1-D Electromagnetic Inversion Scheme Requiring Minimal A Priori Information , 2002 .

[11]  Carlos Torres-Verdín,et al.  Finite-difference Modeling of EM Fields Using Coupled Potentials In 3D Anisotropic Media: Application to Borehole Logging , 2003 .

[12]  Jérôme Jaffré,et al.  Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities , 2002 .

[13]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[14]  Tsili Wang,et al.  3‐D electromagnetic anisotropy modeling using finite differences , 2001 .

[15]  Juun van der Horst,et al.  A New Multicomponent Induction Logging Tool To Resolve Anisotropic Formations , 2000 .

[16]  Trond Mannseth,et al.  Adaptive Multiscale Permeability Estimation , 2003 .

[17]  Vladimir Druskin,et al.  Gaussian Spectral Rules for the Three-Point Second Differences: I. A Two-Point Positive Definite Problem in a Semi-Infinite Domain , 1999, SIAM J. Numer. Anal..

[18]  Carlos Torres-Verdín,et al.  Finite-difference modeling of borehole induction data in the presence of 3D electrical conductivity anisotropy using coupled scattered potentials , 2004 .

[19]  David L. Alumbaugh,et al.  One-Dimensional Inversion of Three-Component Induction Logging In Anisotropic Media , 2001 .

[20]  Jacques R. Tabanou,et al.  Fast And Rigorous Inversion of Triaxial Induction Logging Data to Determine Formation Resistivity Anisotropy, Bed Boundary Position, Relative Dip And Azimuth Angles , 2003 .

[21]  Carlos Torres-Verdín,et al.  A dual‐grid nonlinear inversion technique with applications to the interpretation of dc resistivity data , 2000 .

[22]  Aria Abubakar,et al.  A Three-dimensional Parametric Inversion of Multi-component Multi-spacing Induction Logging Data , 2004 .