Applications of forbidden 0-1 matrices to search tree and path compression-based data structures
暂无分享,去创建一个
[1] Richard Cole,et al. On the dynamic finger conjecture for splay trees , 1990, STOC '90.
[2] Radoslav Fulek,et al. Linear bound on extremal functions of some forbidden patterns in 0-1 matrices , 2009, Discret. Math..
[3] Han La Poutré. Lower Bounds for the Union-Find and the Sp;it-Find Problem on Pointer Machines , 1996, J. Comput. Syst. Sci..
[4] Robert E. Tarjan,et al. Data-Structural Bootstrapping, Linear Path Compression, and Catenable Heap-Ordered Double-Ended Queues , 1995, SIAM J. Comput..
[5] Robert E. Tarjan,et al. Data structural bootstrapping, linear path compression, and catenable heap ordered double ended queues , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[6] Micha Sharir,et al. Top-Down Analysis of Path Compression , 2005, SIAM J. Comput..
[7] Daniel M. Kane,et al. The geometry of binary search trees , 2009, SODA.
[8] Haim Kaplan,et al. Meldable heaps and boolean union-find , 2002, STOC '02.
[9] Micha Sharir,et al. On Vertical Visibility in Arrangements of Segments and the Queue Size in the Bentley-Ottmann Line Sweeping Algorithm , 1991, SIAM J. Comput..
[10] Robert E. Tarjan,et al. A Class of Algorithms which Require Nonlinear Time to Maintain Disjoint Sets , 1979, J. Comput. Syst. Sci..
[11] Gábor Tardos,et al. On 0-1 matrices and small excluded submatrices , 2005, J. Comb. Theory, Ser. A.
[12] Michael J. Fischer,et al. Efficiency of Equivalence Algorithms , 1972, Complexity of Computer Computations.
[13] Joan M. Lucas. On the Competitiveness of Splay Trees: Relations to the Union-Find Problem , 1991, On-Line Algorithms.
[14] Zoltán Füredi,et al. Davenport-Schinzel theory of matrices , 1992, Discret. Math..
[15] Raymond E. Miller,et al. Complexity of Computer Computations , 1972 .
[16] Alok Aggarwal,et al. Geometric applications of a matrix-searching algorithm , 1987, SCG '86.
[17] Gabriel Nivasch,et al. Improved bounds and new techniques for Davenport--Schinzel sequences and their generalizations , 2008, SODA.
[18] Balázs Keszegh,et al. On linear forbidden submatrices , 2009, J. Comb. Theory, Ser. A.
[19] Sanjeev Saxena. Splay Trees , 2004, Handbook of Data Structures and Applications.
[20] Rajamani Sundar,et al. On the deque conjecture for the splay algorithm , 1992, Comb..
[21] Richard Cole,et al. On the Dynamic Finger Conjecture for Splay Trees. Part II: The Proof , 2000, SIAM J. Comput..
[22] Robert E. Tarjan,et al. Faster Algorithms for Incremental Topological Ordering , 2008, ICALP.
[23] Robert E. Tarjan,et al. Sequential access in splay trees takes linear time , 1985, Comb..
[24] Amr Elmasry,et al. On the sequential access theorem and deque conjecture for splay trees , 2004, Theor. Comput. Sci..
[25] Robert E. Tarjan,et al. Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.
[26] János Pach,et al. Forbidden paths and cycles in ordered graphs and matrices , 2006 .
[27] Zoltán Füredi,et al. The maximum number of unit distances in a convex n-gon , 1990, J. Comb. Theory, Ser. A.
[28] Gábor Tardos,et al. Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.
[29] Seth Pettie,et al. On nonlinear forbidden 0-1 matrices: a refutation of a Füredi-Hajnal conjecture , 2010, SODA '10.
[30] Michael E. Saks,et al. The cell probe complexity of dynamic data structures , 1989, STOC '89.
[31] Micha Sharir,et al. A near-linear algorithm for the planar segment-center problem , 1994, SODA '94.
[32] Ervin Györi,et al. An Extremal Problem on Sparse 0-1 Matrices , 1991, SIAM J. Discret. Math..
[33] Robert E. Tarjan,et al. Self-adjusting binary search trees , 1985, JACM.
[34] Jesse T. Geneson,et al. Extremal functions of forbidden double permutation matrices , 2009, J. Comb. Theory, Ser. A.
[35] Seth Pettie,et al. Splay trees, Davenport-Schinzel sequences, and the deque conjecture , 2007, SODA '08.
[36] Jan van Leeuwen,et al. Worst-case Analysis of Set Union Algorithms , 1984, JACM.
[37] Micha Sharir,et al. Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.
[38] Joan M. Lucas. Postorder Disjoint Set Union is Linear , 1990, SIAM J. Comput..
[39] Han La Poutré. Lower bounds for the union-find and the split-find problem on pointer machines , 1990, STOC '90.
[40] Martin Klazar,et al. The Füredi-Hajnal Conjecture Implies the Stanley-Wilf Conjecture , 2000 .
[41] Jaroslav Nesetril,et al. Linearity and Unprovability of Set Union Problem Strategies. I. Linearity of Strong Postorder , 1997, J. Algorithms.
[42] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.
[43] Micha Sharir,et al. Planar realizations of nonlinear davenport-schinzel sequences by segments , 1988, Discret. Comput. Geom..