High pressure torsion of binary Cu64.5Zr35.5 alloy

Disks of Cu64.5Zr35.5 composition were deformed by high pressure torsion. The cross‐section and radial dependence of the microstructure was monitored by X‐ray diffraction and scanning electron microscopy. The extreme shear deformation, particularly at the perimeter of the disk promotes the formation of a homogeneous surface layer with a thickness of 10 µm and the blocks of Cu‐enriched regions in the bulk. Calorimetric measurements indicate the presence of a minor amorphous component.

[1]  M. Umemoto,et al.  Fabrication of CuZr(Al) bulk metallic glasses by high pressure torsion , 2009 .

[2]  Terence G. Langdon,et al.  Using high-pressure torsion for metal processing: Fundamentals and applications , 2008 .

[3]  X. D. Wang,et al.  Atomic structure of binary Cu64.5Zr35.5 bulk metallic glass , 2008 .

[4]  E. Fleury,et al.  Thermal and mechanical behaviors of Cu–Zr amorphous alloys , 2007 .

[5]  P. Szabó,et al.  Radial dependence of the microstructure in a HPT Cu-Zr-Ti disc , 2007 .

[6]  Á. Révész,et al.  Partial amorphization of a Cu–Zr–Ti alloy by high pressure torsion , 2006 .

[7]  Zushu Hu,et al.  Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zr50 , 2006 .

[8]  J. Lewandowski,et al.  Understanding the Glass-forming Ability of Cu_50Zr_50 Alloys in Terms of a Metastable Eutectic , 2005 .

[9]  T. Ohkubo,et al.  Enhancement of glass forming ability and plasticity by addition of Nb in Cu–Ti–Zr–Ni–Si bulk metallic glasses , 2005 .

[10]  T. Langdon,et al.  Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion , 2005 .

[11]  T. Langdon,et al.  The microstructural characteristics of ultrafine-grained nickel , 2005 .

[12]  H. Stüwe,et al.  Structure of Cu deformed by high pressure torsion , 2005 .

[13]  W. Johnson,et al.  Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm , 2004 .

[14]  Dong Wang,et al.  Bulk metallic glass formation in the binary Cu–Zr system , 2004 .

[15]  Ruslan Z. Valiev,et al.  Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing , 2003 .

[16]  T. Langdon,et al.  Orientation imaging microscopy of ultrafine-grained nickel , 2002 .

[17]  Akihisa Inoue,et al.  High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems , 2001 .

[18]  D. Butt,et al.  Microstructural evolution, microhardness and thermal stability of HPT-processed Cu , 2000 .

[19]  V. Stolyarov,et al.  Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion , 2000 .

[20]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[21]  A. Inoue,et al.  Preparation of Ti–Cu–Ni–Si–B Amorphous Alloys with a Large Supercooled Liquid Region , 1999 .

[22]  R. Valiev Structure and mechanical properties of ultrafine-grained metals , 1997 .

[23]  F. R. de Boer,et al.  Model predictions for the enthalpy of formation of transition metal alloys II , 1977 .