Network analysis of gene essentiality in functional genomics experiments

Many genomic techniques have been developed to study gene essentiality genome-wide, such as CRISPR and shRNA screens. Our analyses of public CRISPR screens suggest protein interaction networks, when integrated with gene expression or histone marks, are highly predictive of gene essentiality. Meanwhile, the quality of CRISPR and shRNA screen results can be significantly enhanced through network neighbor information. We also found network neighbor information to be very informative on prioritizing ChIP-seq target genes and survival indicator genes from tumor profiling. Thus, our study provides a general method for gene essentiality analysis in functional genomic experiments (http://nest.dfci.harvard.edu).

[1]  Bridget E. Begg,et al.  A Proteome-Scale Map of the Human Interactome Network , 2014, Cell.

[2]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[3]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[4]  Matthew W. Hahn,et al.  Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. , 2005, Molecular biology and evolution.

[5]  Jon C. Aster,et al.  NOTCH1–RBPJ complexes drive target gene expression through dynamic interactions with superenhancers , 2013, Proceedings of the National Academy of Sciences.

[6]  K. Kinzler,et al.  A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53 , 2009, Proceedings of the National Academy of Sciences.

[7]  Qian Wang,et al.  A comprehensive view of nuclear receptor cancer cistromes. , 2011, Cancer research.

[8]  Christina S. Leslie,et al.  CSF-1R inhibition alters macrophage polarization and blocks glioma progression , 2013, Nature Medicine.

[9]  Peng Jiang,et al.  SPICi: a fast clustering algorithm for large biological networks , 2010, Bioinform..

[10]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[11]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[12]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[13]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[14]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[15]  Ellen T. Gelfand,et al.  Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies , 2014, Scientific Data.

[16]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[17]  Hanfei Sun,et al.  Target analysis by integration of transcriptome and ChIP-seq data with BETA , 2013, Nature Protocols.

[18]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[19]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[20]  R. Sharan,et al.  Network-based prediction of protein function , 2007, Molecular systems biology.

[21]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[22]  Shiyou Zhu,et al.  High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells , 2014, Nature.

[23]  Luke A. Gilbert,et al.  Engineering Complex Synthetic Transcriptional Programs with CRISPR RNA Scaffolds , 2015, Cell.

[24]  Haiyuan Yu,et al.  Three-dimensional reconstruction of protein networks provides insight into human genetic disease , 2012, Nature Biotechnology.

[25]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[26]  J. Kinney,et al.  Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains , 2015, Nature Biotechnology.

[27]  W. Cavenee,et al.  Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. , 2012, Current cancer drug targets.

[28]  Min Li,et al.  Understanding the role of cytokines in Glioblastoma Multiforme pathogenesis. , 2012, Cancer letters.

[29]  Jun S. Liu,et al.  MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens , 2014, Genome Biology.

[30]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[31]  Yilong Li,et al.  Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library , 2013, Nature Biotechnology.

[32]  A. Barabasi,et al.  Uncovering disease-disease relationships through the incomplete interactome , 2015, Science.

[33]  Luke A. Gilbert,et al.  CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes , 2013, Cell.

[34]  Jun S. Liu,et al.  Inference of transcriptional regulation in cancers , 2015, Proceedings of the National Academy of Sciences.

[35]  Ting Chen,et al.  Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks , 2014, Briefings Bioinform..

[36]  Andrew M. Gross,et al.  Network-based stratification of tumor mutations , 2013, Nature Methods.

[37]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[38]  Bonnie Berger,et al.  RNAiCut: automated detection of significant genes from functional genomic screens , 2009, Nature Methods.

[39]  Junhee Seok,et al.  JETTA: junction and exon toolkits for transcriptome analysis , 2012, Bioinform..

[40]  References , 1971 .

[41]  E. Schadt,et al.  Integrating siRNA and protein-protein interaction data to identify an expanded insulin signaling network. , 2009, Genome research.

[42]  S. Burma,et al.  Epidermal growth factor receptor in glioma: signal transduction, neuropathology, imaging, and radioresistance. , 2010, Neoplasia.

[43]  Neville E. Sanjana,et al.  High-throughput functional genomics using CRISPR–Cas9 , 2015, Nature Reviews Genetics.

[44]  Damian Szklarczyk,et al.  STRING v9.1: protein-protein interaction networks, with increased coverage and integration , 2012, Nucleic Acids Res..

[45]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[46]  E. Levanon,et al.  Human housekeeping genes are compact. , 2003, Trends in genetics : TIG.

[47]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[48]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[49]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[50]  Hakho Lee,et al.  Genome-wide CRISPR Screen in a Mouse Model of Tumor Growth and Metastasis , 2015, Cell.

[51]  Daniel S. Himmelstein,et al.  Understanding multicellular function and disease with human tissue-specific networks , 2015, Nature Genetics.

[52]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[53]  Max A. Horlbeck,et al.  Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation , 2014, Cell.

[54]  P. Kabos,et al.  CXCR4 expression mediates glioma cell invasiveness , 2006, Oncogene.

[55]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.

[56]  Martin Renqiang Min,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[57]  T. Takagi,et al.  Assessment of prediction accuracy of protein function from protein–protein interaction data , 2001, Yeast.

[58]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[59]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[60]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[61]  Jayant P. Menon,et al.  Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. , 2006, Cancer cell.

[62]  Andrew P. Stubbs,et al.  Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. , 2009, Cancer research.

[63]  Fengzhu Sun,et al.  A network-based integrative approach to prioritize reliable hits from multiple genome-wide RNAi screens in Drosophila , 2009, BMC Genomics.

[64]  Jonathan Schug,et al.  Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells , 2011, Proceedings of the National Academy of Sciences.

[65]  W. Lencer,et al.  Cholera Toxin: An Intracellular Journey into the Cytosol by Way of the Endoplasmic Reticulum , 2010, Toxins.

[66]  Gary D. Bader,et al.  The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function , 2010, Nucleic Acids Res..