SVEN: Informative Visual Representation of Complex Dynamic Structure

Abstract : Graphs change over time, and typically variations on the small multiples or animation pattern is used to convey this dynamism visually. However, both of these classical techniques have significant drawbacks, so a new approach, Storyline Visualization of Events on a Network (SVEN) is proposed. SVEN builds on storyline techniques, conveying nodes as contiguous lines over time. SVEN encodes time in a natural manner, along the horizontal axis, and optimizes the vertical placement of storylines to decrease clutter (line crossings, straightness, and bends) in the drawing. This paper demonstrates SVEN on several different flavors of real-world dynamic data, and outlines the remaining near-term future work.

[1]  Mengchen Liu,et al.  StoryFlow: Tracking the Evolution of Stories , 2013, IEEE Transactions on Visualization and Computer Graphics.

[2]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[3]  Daniel W. Archambault,et al.  Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[4]  Emden R. Gansner,et al.  A Technique for Drawing Directed Graphs , 1993, IEEE Trans. Software Eng..

[5]  Peter Eades,et al.  Visualising a fund manager flow graph with columns and worms , 2002, Proceedings Sixth International Conference on Information Visualisation.

[6]  James Abello,et al.  ASK-GraphView: A Large Scale Graph Visualization System , 2006, IEEE Transactions on Visualization and Computer Graphics.

[7]  Daniel A. McFarland,et al.  The Art and Science of Dynamic Network Visualization , 2006, J. Soc. Struct..

[8]  Helwig Hauser,et al.  Parallel Sets: Visual Analysis of Categorical Data , 2005, INFOVIS.

[9]  Roberto Tamassia,et al.  A unified approach to visibility representations of planar graphs , 1986, Discret. Comput. Geom..

[10]  P. Nordlie,et al.  A longitudinal study of interpersonal attraction in a natural group setting , 1958 .

[11]  Carl T. Bergstrom,et al.  Mapping Change in Large Networks , 2008, PloS one.

[12]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[13]  TanahashiYuzuru,et al.  Design Considerations for Optimizing Storyline Visualizations , 2012 .

[14]  Q. Ouyang,et al.  The yeast cell-cycle network is robustly designed. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[16]  Michael Balzer,et al.  Level-of-detail visualization of clustered graph layouts , 2007, 2007 6th International Asia-Pacific Symposium on Visualization.

[17]  Kwan-Liu Ma,et al.  Software evolution storylines , 2010, SOFTVIS '10.

[18]  Chen Wang,et al.  Dynamic network visualization in 1.5D , 2011, 2011 IEEE Pacific Visualization Symposium.

[19]  Chaomei Chen,et al.  CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature , 2006, J. Assoc. Inf. Sci. Technol..

[20]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[21]  Niklas Elmqvist,et al.  Exploring the design space of composite visualization , 2012, 2012 IEEE Pacific Visualization Symposium.

[22]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[23]  Daniel A. McFarland,et al.  Dynamic Network Visualization1 , 2005, American Journal of Sociology.

[24]  Martin Wattenberg,et al.  Arc diagrams: visualizing structure in strings , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[25]  Tanya Y. Berger-Wolf,et al.  Constant-factor approximation algorithms for identifying dynamic communities , 2009, KDD.

[26]  Ulrik Brandes,et al.  Visual Unrolling of Network Evolution and the Analysis of Dynamic Discourse† , 2003, Inf. Vis..

[27]  Tanya Y. Berger-Wolf,et al.  A framework for community identification in dynamic social networks , 2007, KDD '07.

[28]  Eve E. Hoggan,et al.  How Important Is the "Mental Map"? - An Empirical Investigation of a Dynamic Graph Layout Algorithm , 2006, GD.

[29]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[30]  PererAdam,et al.  “Search, Show Context, Expand on Demand” , 2009 .

[31]  S. Boorman,et al.  Social Structure from Multiple Networks. II. Role Structures , 1976, American Journal of Sociology.

[32]  T. Newcomb The acquaintance process , 1961 .

[33]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[34]  Tommi S. Jaakkola,et al.  Fast optimal leaf ordering for hierarchical clustering , 2001, ISMB.

[35]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[36]  Stephen G. Kobourov,et al.  Exploring the computing literature using temporal graph visualization , 2004, IS&T/SPIE Electronic Imaging.

[37]  S. Boorman,et al.  Social structure from multiple networks: I , 1976 .

[38]  Andreas Noack,et al.  Multi-level Algorithms for Modularity Clustering , 2008, SEA.

[39]  Emden R. Gansner,et al.  Graphviz - Open Source Graph Drawing Tools , 2001, GD.

[40]  Tanya Y. Berger-Wolf,et al.  A framework for analysis of dynamic social networks , 2006, KDD '06.

[41]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[42]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[43]  Tim Dwyer,et al.  Scalable, Versatile and Simple Constrained Graph Layout , 2009, Comput. Graph. Forum.

[44]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[45]  Kwan-Liu Ma,et al.  Design Considerations for Optimizing Storyline Visualizations , 2012, IEEE Transactions on Visualization and Computer Graphics.

[46]  Ed Huai-hsin Chi,et al.  Sensemaking of evolving Web sites using visualization spreadsheets , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[47]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[48]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[49]  Andreas Noack,et al.  An Energy Model for Visual Graph Clustering , 2003, GD.

[50]  Tony Jebara,et al.  Structure preserving embedding , 2009, ICML '09.

[51]  Koichi Yamazaki,et al.  A note on greedy algorithms for the maximum weighted independent set problem , 2003, Discret. Appl. Math..

[52]  Andrew E. Johnson,et al.  Visualizing the Evolution of Community Structures in Dynamic Social Networks , 2011, Comput. Graph. Forum.

[53]  Jeffrey Heer,et al.  Tracing genealogical data with TimeNets , 2010, AVI.

[54]  Frank van Ham,et al.  “Search, Show Context, Expand on Demand”: Supporting Large Graph Exploration with Degree-of-Interest , 2009, IEEE Transactions on Visualization and Computer Graphics.

[55]  Mario Schmidt,et al.  The Sankey Diagram in Energy and Material Flow Management , 2008 .

[56]  Leslie Lamport,et al.  Time, clocks, and the ordering of events in a distributed system , 1978, CACM.

[57]  Ulrik Brandes Optimal leaf ordering of complete binary trees , 2007, J. Discrete Algorithms.

[58]  Leland Wilkinson,et al.  The History of the Cluster Heat Map , 2009 .

[59]  Innar Liiv,et al.  Seriation and matrix reordering methods: An historical overview , 2010, Stat. Anal. Data Min..

[60]  Michael Burch,et al.  Parallel Edge Splatting for Scalable Dynamic Graph Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.