Asymptotic Behavior of Quasi-Nonexpansive Mappings

[1]  A. Zaslavski Existence of solutions of optimal control problems for a generic intergrand without convexity assumptions , 2001 .

[2]  A. Zaslavski Generic Well-Posedness of Optimal Control Problems without Convexity Assumptions , 2000, SIAM J. Control. Optim..

[3]  A. Iusem,et al.  Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization , 2000 .

[4]  Robert Deville,et al.  Porosity of ill-posed problems , 1999 .

[5]  S. Reich,et al.  Convergence of generic infinite products of nonexpansive and uniformly continuous operators , 1999 .

[6]  F. S. De Blasi,et al.  On a Generalized Best Approximation Problem , 1998 .

[7]  Yair Censor,et al.  Iterative Averaging of Entropic Projections for Solving Stochastic Convex Feasibility Problems , 1997, Comput. Optim. Appl..

[8]  J. Ball,et al.  Universal singular sets for one-dimensional variational problems , 1993 .

[9]  J. Borwein,et al.  A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions , 1987 .

[10]  J. Myjak,et al.  Generic flows generated by continuous vector fields in Banach spaces , 1983 .

[11]  Y. Censor,et al.  An iterative row-action method for interval convex programming , 1981 .

[12]  G. Lebourg,et al.  Generic differentiability of Lipschitzian functions , 1979 .

[13]  E. Asplund Fréchet differentiability of convex functions , 1968 .

[14]  S. Reich,et al.  Asymptotic Behavior of Relatively Nonexpansive Operators in Banach Spaces , 2001 .

[15]  Heinz H. Bauschke,et al.  Joint and Separate Convexity of the Bregman Distance , 2001 .

[16]  Alexander D. Ioffe,et al.  Variational Principles and Well-Posedness in Optimization and Calculus of Variations , 2000, SIAM J. Control. Optim..

[17]  A. Zaslavski Turnpike property for extremals of variational problems with vector-valued functions , 1999 .

[18]  S. Reich,et al.  Generic power convergence of operators in banach spaces , 1999 .

[19]  Y. Censor,et al.  Iterations of paracontractions and firmaly nonexpansive operators with applications to feasibility and optimization , 1996 .

[20]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .