Energy decay estimates for the damped plate equation with a local degenerated dissipation
暂无分享,去创建一个
[1] Kangsheng Liu. Locally Distributed Control and Damping for the Conservative Systems , 1997 .
[2] Micro-Local Approach to the Control for the Plates Equation , 1992 .
[3] George Weiss,et al. Regular linear systems with feedback , 1994, Math. Control. Signals Syst..
[4] Enrique Zuazua,et al. Exponential Decay for The Semilinear Wave Equation with Locally Distributed Damping , 1990 .
[5] G. Lebeau. Contrôle de l'équation de Schrödinger , 1992 .
[6] M. Nakao. Decay of solutions of the wave equation with a local degenerate dissipation , 1996 .
[7] P. Martinez. Decay of solutions of the wave equation with a local highly degenerate dissipation , 1999 .
[8] Kaïs Ammari,et al. Stabilization of second order evolution equations by a class of unbounded feedbacks , 2001 .
[9] B. Allibert. Controle analytique de l'equation des ondes et de l'equation de schrodinger sur des surfaces de revolution , 1998 .
[10] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[11] J. Lions,et al. Contrôlabilité exacte des systèmes distribués , 1986 .
[12] D. Russell. Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods☆ , 1975 .
[13] Stéphane Jaffard. Contrôle interne exact des vibrations d'une plaque rectangulaire , 1990 .
[14] Irena Lasiecka,et al. Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping , 1993, Differential and Integral Equations.