GPstuff: Bayesian modeling with Gaussian processes

The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools required for Bayesian inference. The tools include, among others, various inference methods, sparse approximations and model assessment methods.

[1]  Aki Vehtari,et al.  Bayesian Modeling with Gaussian Processes using the GPstuff Toolbox , 2012, 1206.5754.

[2]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning (GPML) Toolbox , 2010, J. Mach. Learn. Res..

[3]  Aki Vehtari,et al.  Robust Gaussian Process Regression with a Student-t Likelihood , 2011, J. Mach. Learn. Res..

[4]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[5]  Aki Vehtari,et al.  Laplace approximation for logistic Gaussian process density estimation and regression , 2012, 1211.0174.

[6]  Aki Vehtari,et al.  A survey of Bayesian predictive methods for model assessment, selection and comparison , 2012 .

[7]  J. Vanhatalo,et al.  Approximate inference for disease mapping with sparse Gaussian processes , 2010, Statistics in medicine.

[8]  J. Bernardo,et al.  Nested Expectation Propagation for Gaussian Process Classification with a Multinomial Probit Likelihood , 2012 .

[9]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[10]  Ian T. Nabney,et al.  Netlab: Algorithms for Pattern Recognition , 2002 .

[11]  Timothy A. Davis,et al.  Algorithm 8 xx : a concise sparse Cholesky factorization package , 2004 .

[12]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[13]  Aki Vehtari,et al.  Modelling local and global phenomena with sparse Gaussian processes , 2008, UAI.

[14]  A. P. Dawid,et al.  Regression and Classification Using Gaussian Process Priors , 2009 .

[15]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.