A fast adaptive vortex method using local corrections

Vortex methods are particle methods for solving time-dependent incompressible fiow problems by discretizing the vorticity into vortex elements and following these elements in thne. The main difficulty with vorte..x methods as originally formulated is that the cost of the evaluation of the velocity field induced by _N' vortices is O( N'2). Tlus is expellsive. particularly in three dimensions where the number of eleillents can increa.se rapidly in time due to vortex stretching. Several lllethods have been developed for reducing this cost by exploiting the fact that the velocity induced by a. vortex elelnellt is harmonic; the method of local corrections (~ILC) is one such method. The 1-ILC is a particle-particle particle-mesh nlethod~ in which the calcula.tion of the velocity field induced by a collection of vortices is split into two parts: (i) a finite difference velocity field calculation using a fast Poisson solver on a unifornl grid superimposed on the vorticity field, and interpolation of tha,t velocity frolll the grid points to the vortices; (li) a local corrections step in which local interactions are computed directly. 'Ve present a fast adaptive vortex method which a.dds adaptive mesh refinement to the ~1LC.

[1]  Christopher R. Anderson,et al.  An Implementation of the Fast Multipole Method without Multipoles , 1992, SIAM J. Sci. Comput..

[2]  Isidore Rigoutsos,et al.  An algorithm for point clustering and grid generation , 1991, IEEE Trans. Syst. Man Cybern..

[3]  A. Qi Three Dimensional Vortex Methods for the Analysis of Wave Propagation on Vortex Filaments , 1991 .

[4]  Omar M. Knio,et al.  Numerical study of a three-dimensional vortex method , 1990 .

[5]  Elke A. Rundensteiner,et al.  Fast, adaptive summation of point forces in the two-dimensional Poisson equation , 1989 .

[6]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[7]  Phillip Colella,et al.  Adaptive mesh refinement on moving quadrilateral grids , 1989 .

[8]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[9]  Scott B. Baden,et al.  Programming Abstractions for Run-Time Partitioning of Scientific Continuum Calculations Running on Multiprocessors , 1987, PPSC.

[10]  C. Greengard Convergence of the Vortex filament method , 1986 .

[11]  R. Krasny A study of singularity formation in a vortex sheet by the point-vortex approximation , 1986, Journal of Fluid Mechanics.

[12]  Christopher R. Anderson,et al.  On Vortex Methods , 1985 .

[13]  J. Gollub,et al.  Vortex Flow in Nature and Technology , 1985 .

[14]  Georges-Henri Cottet,et al.  Particle Methods for the One-Dimensional Vlasov–Poisson Equations , 1984 .

[15]  Marjorie Perlman,et al.  Accuracy of vortex methods , 1983 .

[16]  A. Chorin The evolution of a turbulent vortex , 1982 .

[17]  Andrew J. Majda,et al.  Vortex methods. I. Convergence in three dimensions , 1982 .

[18]  A. Majda,et al.  Vortex methods. II. Higher order accuracy in two and three dimensions , 1982 .

[19]  A. Chorin Estimates of intermittency, spectra, and blow-up in developed turbulence , 1981 .

[20]  A. Leonard Vortex methods for flow simulation , 1980 .

[21]  William Gropp,et al.  A Test of Moving Mesh Refinement for 2-D Scalar Hyperbolic Problems , 1980 .

[22]  Alexandre J. Chorin,et al.  Vortex Models and Boundary Layer Instability , 1980 .

[23]  P. Saffman The number of waves on unstable vortex rings , 1978, Journal of Fluid Mechanics.

[24]  Sheila E. Widnall,et al.  The instability of the thin vortex ring of constant vorticity , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[25]  T. Maxworthy,et al.  Some experimental studies of vortex rings , 1977, Journal of Fluid Mechanics.

[26]  Donald B. Bliss,et al.  The instability of short waves on a vortex ring , 1974, Journal of Fluid Mechanics.

[27]  T. Maxworthy,et al.  Turbulent vortex rings , 1974, Journal of Fluid Mechanics.

[28]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[29]  T. Maxworthy The structure and stability of vortex rings , 1972, Journal of Fluid Mechanics.

[30]  L. Collatz The numerical treatment of differential equations , 1961 .

[31]  Previously,et al.  Fast Potential Theory II: Layer Potentials and Dis rete Sums (cid:3) , 2010 .

[32]  AUT. SORfe,et al.  Computational Structure of the N-body Problem , 1989 .

[33]  Stephen F. McCormick,et al.  Multilevel adaptive methods for partial differential equations , 1989, Frontiers in applied mathematics.

[34]  Scott B. Baden,et al.  Very large vortex calculations in two dimensions , 1988 .

[35]  C. R. Anderson A method of local corrections for computing the velocity field due to a distribution of vortex blobs , 1986 .

[36]  Antony Jameson,et al.  An adaptive multigrid method for the euler equations , 1985 .

[37]  A. Leonard Computing Three-Dimensional Incompressible Flows with Vortex Elements , 1985 .

[38]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[39]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[40]  J. Leblanc THÈSE DE 3ÈME CYCLE , 1978 .

[41]  P. Tait Vector Analysis , 1893, Nature.

[42]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .