A perspective on chemistry in transient plasma from broadband rotational spectroscopy.

Broadband rotational spectroscopy provides a new method by which plasma chemistry can be explored. Molecules and complexes form when precursors within an expanding gas sample are allowed to interact with plasma generated by an electrical discharge or laser vaporisation of a solid. It is thus possible to selectively generate specific molecules or complexes for study through a careful choice of appropriate precursors. It is also possible to survey an extensive range of the products formed under a given set of initial conditions in an approach termed "broadband reaction screening". Broadband rotational spectroscopy provides an opportunity to simultaneously monitor the transitions of many different chemical products and this allows broader details of reaction pathways to be inferred. This Perspective will describe various experimental approaches and review recent works that have applied broadband rotational spectroscopy to study molecules and complexes generated (in whole or in part) through chemistry occurring within transient plasma.

[1]  S. Cooke,et al.  117Sn and 119Sn hyperfine structure in the rotational spectrum of tin monosulfide recorded using laser ablation-source equipped, chirped-pulse Fourier transform microwave spectroscopy , 2010 .

[2]  Kaori Kobayashi,et al.  Extension of the measurement, assignment, and fit of the rotational spectrum of the two-top molecule methyl acetate , 2014 .

[3]  Brian C. Dian,et al.  Dissociation Pathways of 2,3-Dihydrofuran Measured by Chirped-Pulse Fourier Transform Microwave Spectroscopy , 2010 .

[4]  D. Plusquellic,et al.  Segmented chirped-pulse Fourier transform submillimeter spectroscopy for broadband gas analysis. , 2013, Optics express.

[5]  B. Pate,et al.  Laboratory and tentative interstellar detection of trans-methyl formate using the publicly available Green Bank Telescope PRIMOS survey , 2012, 1206.6021.

[6]  Nicholas R. Walker,et al.  Determination of Nuclear Spin-rotation Coupling Constants in CF3I by Chirped-pulse Fourier Transform Microwave Spectroscopy , 2010 .

[7]  Brooks H. Pate,et al.  Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer , 2013 .

[8]  D. Mcgilvery,et al.  Production of metal atoms, clusters and complexes in pulsed discharge‐excited jets : Studies via mass‐resolved laser multiphoton ionization , 1991 .

[9]  Stanley L. Miller,et al.  Organic Compound Synthes on the Primitive Eart: Several questions about the origin of life have been answered, but much remains to be studied , 1959 .

[10]  Michael C. McCarthy,et al.  DETECTION OF E-CYANOMETHANIMINE TOWARD SAGITTARIUS B2(N) IN THE GREEN BANK TELESCOPE PRIMOS SURVEY , 2013 .

[11]  Fernando Castaño,et al.  Probing the C-H⋅⋅⋅π weak hydrogen bond in anesthetic binding: the sevoflurane-benzene cluster. , 2014, Angewandte Chemie.

[12]  Michael C. McCarthy,et al.  Detection of the Carbon Chain Negative Ion C8H– in TMC-1 , 2007 .

[13]  R. Kaiser,et al.  Synthesis of the silaisocyanoacetylene molecule. , 2012, Journal of the American Chemical Society.

[14]  Y. Ohshima,et al.  Rotational spectroscopy of jet-cooled molecular ions and ion complexes , 1996 .

[15]  H. James Cleaves,et al.  An Investigation of Prebiotic Purine Synthesis from the Hydrolysis of HCN Polymers , 2005, Origins of Life and Evolution of Biospheres.

[16]  E. B. Wilson Conformational studies on small molecules , 1972 .

[17]  Grant T. Buckingham,et al.  Chirped-Pulse Fourier Transform Microwave Spectroscopy Coupled with a Flash Pyrolysis Microreactor: Structural Determination of the Reactive Intermediate Cyclopentadienone. , 2014, The journal of physical chemistry letters.

[18]  D. Obenchain,et al.  Rotational spectrum of three conformers of 3,3-difluoropentane: Construction of a 480 MHz bandwidth chirped-pulse Fourier-transform microwave spectrometer , 2010 .

[19]  Oscar Martinez,et al.  Detection of two highly stable silicon nitrides: HSiNSi and H3SiNSi. , 2013, The journal of physical chemistry. A.

[20]  J. Stanton,et al.  Chirped-Pulse millimeter-Wave spectroscopy for dynamics and kinetics studies of pyrolysis reactions. , 2014, Physical chemistry chemical physics : PCCP.

[21]  P. Thaddeus,et al.  Microwave and laser spectroscopy of carbon chains and rings , 2001 .

[22]  S. R. Silva,et al.  Dynamics of confined plumes during short and ultrashort pulsed laser ablation of graphite , 2005 .

[23]  J. Couderc,et al.  Analysis and Modeling of Low Pressure CVD of Silicon Nitride from a Silane‐Ammonia Mixture: I. Experimental Study and Determination of a Gaseous Phase Mechanism , 1999 .

[24]  J. Oró,et al.  Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions , 1961, Nature.

[25]  E. J. Campbell,et al.  The vibrational ground state rotational spectroscopic constants and structure of the HCN dimer , 1981 .

[26]  G. T. Fraser,et al.  The rotational spectrum and structure of NH3–HCN , 1984 .

[27]  P. C. Joshi,et al.  HCN: A plausible source of purines, pyrimidines and amino acids on the primitive earth , 1978, Journal of Molecular Evolution.

[28]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[29]  Michael C. McCarthy,et al.  THE DETECTION OF INTERSTELLAR ETHANIMINE (CH3CHNH) FROM OBSERVATIONS TAKEN DURING THE GBT PRIMOS SURVEY , 2013 .

[30]  Melanie Schnell,et al.  Broadband Rotational Spectroscopy for Molecular Structure and Dynamics Studies , 2012 .

[31]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[32]  Daniel J. Frohman,et al.  Measurement and analysis of the pure rotational spectra of tin monochloride, SnCl, using laser ablation equipped chirped pulse and cavity Fourier transform microwave spectroscopy , 2012 .

[33]  Scott A. Sandford,et al.  Mechanisms of Amino Acid Formation in Interstellar Ice Analogs , 2007 .

[34]  D. G. Scroggin,et al.  MICROWAVE SPECTRUM AND ROTATIONAL ISOMERISM OF ETHYL FORMATE. , 1967 .

[35]  L. Ziurys,et al.  DETECTION OF A NEW INTERSTELLAR MOLECULE: THIOCYANIC ACID HSCN , 2009 .

[36]  K. Walker,et al.  Microwave Fourier Transform Spectroscopy of Magnesium Sulfide Produced by Laser Ablation , 1997 .

[37]  S. Klippenstein,et al.  Vibrational spectroscopy and density functional theory of transition-metal ion-benzene and dibenzene complexes in the gas phase. , 2004, Journal of the American Chemical Society.

[38]  E. B. Wilson,et al.  ON THE ORIGIN OF POTENTIAL BARRIERS TO INTERNAL ROTATION IN MOLECULES. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Thaddeus,et al.  Microwave Spectra of 11 Polyyne Carbon Chains , 2000 .

[40]  Gordon G. Brown,et al.  A broadband Fourier transform microwave spectrometer based on chirped pulse excitation. , 2008, The Review of scientific instruments.

[41]  J. Alonso,et al.  A broadband Fourier-transform microwave spectrometer with laser ablation source: The rotational spectrum of nicotinic acid , 2012 .

[42]  D. Tew,et al.  Molecular geometry of OC···AgI determined by broadband rotational spectroscopy and ab initio calculations. , 2012, The Journal of chemical physics.

[43]  R. Sauerbrey,et al.  Characterization of plasmas from a pulsed jet discharge for applications VUV spectroscopy and micromechanics , 1990 .

[44]  B. Wurfel,et al.  A pulsed discharge source of transients for matrix isolation spectroscopy , 1992 .

[45]  A. Lifshitz,et al.  Thermal reactions of cyclic ethers at high temperatures. III: Pyrolysis of furan behind reflected shocks , 1986 .

[46]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.

[47]  W. Flygare,et al.  Fabry–Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source , 1981 .

[48]  C. Lin,et al.  Calculation of Energy Levels for Internal Torsion and Over‐All Rotation. II. CH3CHO Type Molecules; Acetaldehyde Spectra , 1957 .

[49]  P. Kalmus,et al.  Laboratory Detection of the Linear Cyanopolyyne HC11N , 1996 .

[50]  See Leang Chin,et al.  Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[51]  S. Shipman,et al.  The rotational spectrum of methyl ethyl ketone in its ground vibrational state , 2014 .

[52]  B. Pate,et al.  An arbitrary waveform generator based chirped pulse Fourier transform spectrometer operating from 260 to 295 GHz , 2012 .

[53]  Paul von Ragué Schleyer,et al.  Chemical evolution: The mechanism of the formation of adenine under prebiotic conditions , 2007, Proceedings of the National Academy of Sciences.

[54]  L. Orgel,et al.  Conditions for Purine Synthesis: Did Prebiotic Synthesis Occur at Low Temperatures? , 1966, Science.

[55]  D. Tew,et al.  H2S⋯Ag–I synthesized by a laser-ablation method and identified by its rotational spectrum , 2012 .

[56]  A. J. Merer,et al.  MICROWAVE SPECTRA OF METAL CHLORIDES PRODUCED USING LASER ABLATION , 1993 .

[57]  J. López,et al.  Jet-cooled rotational spectrum of laser-ablated phenylalanine. , 2011, The journal of physical chemistry. A.

[58]  N Menyuk,et al.  Laser Remote Sensing of the Atmosphere , 1987, Science.

[59]  Jeremiah J. Wilke,et al.  A laboratory and theoretical study of protonated carbon disulfide, HSCS+. , 2009, The Journal of chemical physics.

[60]  M. Kahru,et al.  Estimation of particulate organic carbon in the ocean from satellite remote sensing , 1999, Science.

[61]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[62]  D. Tew,et al.  Monohydrates of cuprous chloride and argentous chloride: H2O⋅⋅⋅CuCl and H2O⋅⋅⋅AgCl characterized by rotational spectroscopy and ab initio calculations. , 2011, The Journal of chemical physics.

[63]  S. Koseki,et al.  Theoretical study on silicon‐nitride film growth: Ab initio molecular orbital calculations , 1992 .

[64]  A. Legon,et al.  OCCuI synthesized by reaction of laser-ablated Cu with a CH3I/CO/Ar mixture and characterised by pulsed-jet, Fourier-transform microwave spectroscopy , 2006 .

[65]  L. Orgel,et al.  An Unusual Photochemical Rearrangement in the Synthesis of Adenine from Hydrogen Cyanide1 , 1966 .

[66]  Kerry C. Etchison,et al.  A search accelerated correct intensity Fourier transform microwave spectrometer with pulsed laser ablation source. , 2007, The Review of scientific instruments.

[67]  D. Tew,et al.  Changes in the geometries of C₂H₂ and C₂H₄ on coordination to CuCl revealed by broadband rotational spectroscopy and ab-initio calculations. , 2014, Inorganic chemistry.

[68]  Nathan A. Seifert,et al.  The interplay of hydrogen bonding and dispersion in phenol dimer and trimer: structures from broadband rotational spectroscopy. , 2013, Physical chemistry chemical physics : PCCP.

[69]  A. Bauder,et al.  Pure rotational spectrum, quadrupole coupling constants and structure of the dimer of pyrrole , 1997 .

[70]  A. A. Safonov,et al.  Silicon nitride chemical vapor deposition from dichlorosilane and ammonia: theoretical study of surface structures and reaction mechanism , 2001 .

[71]  A. Burcat Cracking of propylene in a shock tube , 1975 .

[72]  Brooks H. Pate,et al.  A Ka-band chirped-pulse Fourier transform microwave spectrometer , 2010 .

[73]  R. Beaudet,et al.  Microwave Spectrum, Barrier to Internal Rotation, and Dipole Moment of cis‐3‐Pentene‐1‐yne , 1971 .

[74]  A. Apponi,et al.  The rotational spectra of the HCCCNH+, NCCNH+, and CH3CNH+ ions , 2000 .

[75]  D. Tew,et al.  Distortion of ethyne on coordination to silver acetylide, C2H2⋅⋅⋅AgCCH, characterised by broadband rotational spectroscopy and ab initio calculations. , 2014, The Journal of chemical physics.

[76]  B. Pate,et al.  Spatial distributions and interstellar reaction processes. , 2011, The journal of physical chemistry. A.

[77]  N. Walker,et al.  Rotational spectra and properties of complexes B···ICF3 (B = Kr or CO) and a comparison of the efficacy of ICl and ICF3 as iodine donors in halogen bond formation. , 2011, The Journal of chemical physics.

[78]  A. Schwartz,et al.  Prebiotic adenine synthesis via HCN oligomerization in ice. , 1982, Bio Systems.