A New Analysis of Block Preconditioners for Saddle Point Problems
暂无分享,去创建一个
[1] A. Wathen,et al. Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .
[2] R. Bank,et al. A class of iterative methods for solving saddle point problems , 1989 .
[3] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[4] Owe Axelsson,et al. Preconditioning methods for linear systems arising in constrained optimization problems , 2003, Numer. Linear Algebra Appl..
[5] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[6] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[7] Cornelis Vuik,et al. GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..
[8] Artem Napov,et al. Algebraic Multigrid for Moderate Order Finite Elements , 2014, SIAM J. Sci. Comput..
[9] P. Strevens. Iii , 1985 .
[10] Andrew J. Wathen,et al. Combination preconditioning of saddle point systems for positive definiteness , 2013, Numer. Linear Algebra Appl..
[11] John N. Shadid,et al. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations , 2008, J. Comput. Phys..
[12] Michele Benzi,et al. On the eigenvalues of a class of saddle point matrices , 2006, Numerische Mathematik.
[13] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[14] Yvan Notay. Flexible Conjugate Gradients , 2000, SIAM J. Sci. Comput..
[15] D. Spalding,et al. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .
[16] J. Pasciak,et al. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .
[17] NapovArtem,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012 .
[18] S. SIAMJ.,et al. AGGREGATION-BASED ALGEBRAIC MULTIGRID FOR CONVECTION-DIFFUSION EQUATIONS∗ , 2012 .
[19] Walter Zulehner,et al. Analysis of iterative methods for saddle point problems: a unified approach , 2002, Math. Comput..
[20] Valeria Simoncini,et al. Block triangular preconditioners for symmetric saddle-point problems , 2004 .
[21] Ilaria Perugia,et al. Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 2000, Numer. Linear Algebra Appl..
[22] Yvan Notay,et al. Algebraic multigrid and algebraic multilevel methods: a theoretical comparison , 2005, Numer. Linear Algebra Appl..
[23] V. Simoncini,et al. Block--diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 1999 .
[24] Luca Bergamaschi,et al. On eigenvalue distribution of constraint‐preconditioned symmetric saddle point matrices , 2012, Numer. Linear Algebra Appl..
[25] L. Trefethen. Spectra and pseudospectra , 2005 .
[26] H. Walker,et al. GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..
[27] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[28] Barbara Kaltenbacher,et al. Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.
[29] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[30] Owe Axelsson,et al. Eigenvalue estimates for preconditioned saddle point matrices , 2006, Numer. Linear Algebra Appl..
[31] E. Sturler,et al. Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems , 2006 .
[32] Masaaki Sugihara,et al. A geometric view of Krylov subspace methods on singular systems , 2011, Numer. Linear Algebra Appl..
[33] A. Wathen,et al. Minimum residual methods for augmented systems , 1998 .
[34] Apostol T. Vassilev,et al. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .
[35] Y. Notay. An aggregation-based algebraic multigrid method , 2010 .
[36] Nicholas I. M. Gould,et al. Preconditioning Saddle-Point Systems with Applications in Optimization , 2010, SIAM J. Sci. Comput..
[37] Luca Bergamaschi,et al. A note on eigenvalue distribution of constraint‐preconditioned symmetric saddle point matrices , 2014, Numer. Linear Algebra Appl..
[38] StübenKlaus. Algebraic multigrid (AMG) , 1983 .
[39] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[40] Yvan Notay,et al. Algebraic analysis of two‐grid methods: The nonsymmetric case , 2010, Numer. Linear Algebra Appl..
[41] L. Trefethen,et al. Numerical linear algebra , 1997 .
[42] Nicholas I. M. Gould,et al. Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[43] G. P. Boerstoel,et al. The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces , 2000 .
[44] D. Bartuschat. Algebraic Multigrid , 2007 .
[45] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[46] T. Rees,et al. Block‐triangular preconditioners for PDE‐constrained optimization , 2010, Numer. Linear Algebra Appl..
[47] Artem Napov,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..
[48] Valeria Simoncini,et al. Spectral analysis of inexact constraint preconditioning for symmetric saddle point matrices , 2013 .
[49] Eric de Sturler,et al. Block-Diagonal and Constraint Preconditioners for Nonsymmetric Indefinite Linear Systems. Part I: Theory , 2005, SIAM J. Sci. Comput..