Vertex Fault-Tolerant Geometric Spanners for Weighted Points

Given a set S of n points, a weight function w to associate a non-negative weight to each point in S, a positive integer k \ge 1, and a real number \epsilon > 0, we present algorithms for computing a spanner network G(S, E) for the metric space (S, d_w) induced by the weighted points in S. The weighted distance function d_w on the set S of points is defined as follows: for any p, q \in S, d_w(p, q) is equal to w(p) + d_\pi(p, q) + w(q) if p \ne q, otherwise, d_w(p, q) is 0. Here, d_\pi(p, q) is the Euclidean distance between p and q if points in S are in \mathbb{R}^d, otherwise, it is the geodesic (Euclidean) distance between p and q. The following are our results: (1) When the weighted points in S are located in \mathbb{R}^d, we compute a k-vertex fault-tolerant (4+\epsilon)-spanner network of size O(k n). (2) When the weighted points in S are located in the relative interior of the free space of a polygonal domain \cal P, we detail an algorithm to compute a k-vertex fault-tolerant (4+\epsilon)-spanner network with O(\frac{kn\sqrt{h+1}}{\epsilon^2} \lg{n}) edges. Here, h is the number of simple polygonal holes in \cal P. (3) When the weighted points in S are located on a polyhedral terrain \cal T, we propose an algorithm to compute a k-vertex fault-tolerant (4+\epsilon)-spanner network, and the number of edges in this network is O(\frac{kn}{\epsilon^2} \lg{n}).

[1]  Robin Thomas,et al.  Planar Separators , 1994, SIAM J. Discret. Math..

[2]  R. Inkulu,et al.  Fault-Tolerant Additive Weighted Geometric Spanners , 2019, CALDAM.

[3]  Joachim Gudmundsson,et al.  Sparse geometric graphs with small dilation , 2008, Comput. Geom..

[4]  Matthew J. Katz,et al.  Minimum power energy spanners in wireless ad hoc networks , 2011, Wirel. Networks.

[5]  Hanan Shpungin,et al.  Improved Multi-criteria Spanners for Ad-Hoc Networks Under Energy and Distance Metrics , 2010, 2010 Proceedings IEEE INFOCOM.

[6]  Michiel H. M. Smid,et al.  Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.

[7]  Prosenjit Bose,et al.  On Plane Constrained Bounded-Degree Spanners , 2012, LATIN.

[8]  Joachim Gudmundsson,et al.  Region-Fault Tolerant Geometric Spanners , 2007, SODA '07.

[9]  Michiel H. M. Smid,et al.  Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..

[10]  Michiel H. M. Smid,et al.  An Optimal Algorithm for Computing Angle-Constrained Spanners , 2010, ISAAC.

[11]  Mohammad Ali Abam,et al.  Geometric Spanners for Points Inside a Polygonal Domain , 2015, Symposium on Computational Geometry.

[12]  Michiel H. M. Smid,et al.  Geometric Spanners with Small Chromatic Number , 2007, WAOA.

[13]  Artur Czumaj,et al.  Fault-Tolerant Geometric Spanners , 2003, SCG '03.

[14]  Joachim Gudmundsson,et al.  A simple and efficient kinetic spanner , 2010, Comput. Geom..

[15]  Xiang-Yang Li,et al.  Efficient Construction of Spanners in $d$-Dimensions , 2013, ArXiv.

[16]  Prosenjit Bose,et al.  Stable Roommates Spanner , 2013, Comput. Geom..

[17]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[18]  Michiel H. M. Smid,et al.  Geometric spanners with small chromatic number , 2009, Comput. Geom..

[19]  Joachim Gudmundsson,et al.  A simple and efficient kinetic spanner , 2008, SCG '08.

[20]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[21]  Michiel H. M. Smid,et al.  Computing the Greedy Spanner in Near-Quadratic Time , 2008, Algorithmica.

[22]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[23]  Joachim Gudmundsson,et al.  Geometric Spanners for Weighted Point Sets , 2010, Algorithmica.

[24]  Mark de Berg,et al.  Geodesic Spanners for Points on a Polyhedral Terrain , 2017, SODA.

[25]  Prosenjit Bose,et al.  Spanners of Additively Weighted Point Sets , 2011, J. Discrete Algorithms.

[26]  Prosenjit Bose,et al.  Polygon Cutting: Revisited , 1998, JCDCG.

[27]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[28]  Michiel H. M. Smid,et al.  Delaunay and diamond Triangulations contain Spanners of Bounded Degree , 2009, Int. J. Comput. Geom. Appl..

[29]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[30]  Matthew J. Katz,et al.  Minimum power energy spanners in wireless ad hoc networks , 2010, 2010 Proceedings IEEE INFOCOM.

[31]  Paul Chew,et al.  There are Planar Graphs Almost as Good as the Complete Graph , 1989, J. Comput. Syst. Sci..

[32]  Michiel H. M. Smid,et al.  Planar Spanners and Approximate Shortest Path Queries among Obstacles in the Plane , 1996, ESA.

[33]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[34]  Paz Carmi,et al.  Bounded Degree Planar Geometric Spanners , 2010, ArXiv.

[35]  Mark de Berg,et al.  Kinetic spanners in Rd , 2009, SCG '09.

[36]  Paz Carmi,et al.  Stable roommates and geometric spanners , 2010, CCCG.

[37]  Joachim Gudmundsson,et al.  Constructing Plane Spanners of Bounded Degree and Low Weight , 2005, Algorithmica.

[38]  Xiang-Yang Li,et al.  Minimum power assignment in wireless ad hoc networks with spanner property , 2004, 2004 Workshop on High Performance Switching and Routing, 2004. HPSR..

[39]  Gautam Das,et al.  WHICH TRIANGULATIONS APPROXIMATE THE COMPLETE GRAPH? , 2022 .

[40]  Michiel H. M. Smid,et al.  Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[41]  Carl Gutwin,et al.  The Delauney Triangulation Closely Approximates the Complete Euclidean Graph , 1989, WADS.

[42]  Giri Narasimhan,et al.  Improved Algorithms for Constructing Fault-Tolerant Spanners , 2001, Algorithmica.

[43]  Shay Solomon From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics , 2014, STOC.

[44]  Tamás Lukovszki,et al.  New Results of Fault Tolerant Geometric Spanners , 1999, WADS.

[45]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[46]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..