暂无分享,去创建一个
[1] Robin Thomas,et al. Planar Separators , 1994, SIAM J. Discret. Math..
[2] R. Inkulu,et al. Fault-Tolerant Additive Weighted Geometric Spanners , 2019, CALDAM.
[3] Joachim Gudmundsson,et al. Sparse geometric graphs with small dilation , 2008, Comput. Geom..
[4] Matthew J. Katz,et al. Minimum power energy spanners in wireless ad hoc networks , 2011, Wirel. Networks.
[5] Hanan Shpungin,et al. Improved Multi-criteria Spanners for Ad-Hoc Networks Under Energy and Distance Metrics , 2010, 2010 Proceedings IEEE INFOCOM.
[6] Michiel H. M. Smid,et al. Efficient construction of a bounded-degree spanner with low weight , 2006, Algorithmica.
[7] Prosenjit Bose,et al. On Plane Constrained Bounded-Degree Spanners , 2012, LATIN.
[8] Joachim Gudmundsson,et al. Region-Fault Tolerant Geometric Spanners , 2007, SODA '07.
[9] Michiel H. M. Smid,et al. Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..
[10] Michiel H. M. Smid,et al. An Optimal Algorithm for Computing Angle-Constrained Spanners , 2010, ISAAC.
[11] Mohammad Ali Abam,et al. Geometric Spanners for Points Inside a Polygonal Domain , 2015, Symposium on Computational Geometry.
[12] Michiel H. M. Smid,et al. Geometric Spanners with Small Chromatic Number , 2007, WAOA.
[13] Artur Czumaj,et al. Fault-Tolerant Geometric Spanners , 2003, SCG '03.
[14] Joachim Gudmundsson,et al. A simple and efficient kinetic spanner , 2010, Comput. Geom..
[15] Xiang-Yang Li,et al. Efficient Construction of Spanners in $d$-Dimensions , 2013, ArXiv.
[16] Prosenjit Bose,et al. Stable Roommates Spanner , 2013, Comput. Geom..
[17] David P. Dobkin,et al. On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..
[18] Michiel H. M. Smid,et al. Geometric spanners with small chromatic number , 2009, Comput. Geom..
[19] Joachim Gudmundsson,et al. A simple and efficient kinetic spanner , 2008, SCG '08.
[20] David Eppstein,et al. Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.
[21] Michiel H. M. Smid,et al. Computing the Greedy Spanner in Near-Quadratic Time , 2008, Algorithmica.
[22] Kunal Talwar,et al. Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.
[23] Joachim Gudmundsson,et al. Geometric Spanners for Weighted Point Sets , 2010, Algorithmica.
[24] Mark de Berg,et al. Geodesic Spanners for Points on a Polyhedral Terrain , 2017, SODA.
[25] Prosenjit Bose,et al. Spanners of Additively Weighted Point Sets , 2011, J. Discrete Algorithms.
[26] Prosenjit Bose,et al. Polygon Cutting: Revisited , 1998, JCDCG.
[27] Jose Augusto Ramos Soares,et al. Graph Spanners: a Survey , 1992 .
[28] Michiel H. M. Smid,et al. Delaunay and diamond Triangulations contain Spanners of Bounded Degree , 2009, Int. J. Comput. Geom. Appl..
[29] Michiel H. M. Smid,et al. Euclidean spanners: short, thin, and lanky , 1995, STOC '95.
[30] Matthew J. Katz,et al. Minimum power energy spanners in wireless ad hoc networks , 2010, 2010 Proceedings IEEE INFOCOM.
[31] Paul Chew,et al. There are Planar Graphs Almost as Good as the Complete Graph , 1989, J. Comput. Syst. Sci..
[32] Michiel H. M. Smid,et al. Planar Spanners and Approximate Shortest Path Queries among Obstacles in the Plane , 1996, ESA.
[33] Joachim Gudmundsson,et al. Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..
[34] Paz Carmi,et al. Bounded Degree Planar Geometric Spanners , 2010, ArXiv.
[35] Mark de Berg,et al. Kinetic spanners in Rd , 2009, SCG '09.
[36] Paz Carmi,et al. Stable roommates and geometric spanners , 2010, CCCG.
[37] Joachim Gudmundsson,et al. Constructing Plane Spanners of Bounded Degree and Low Weight , 2005, Algorithmica.
[38] Xiang-Yang Li,et al. Minimum power assignment in wireless ad hoc networks with spanner property , 2004, 2004 Workshop on High Performance Switching and Routing, 2004. HPSR..
[39] Gautam Das,et al. WHICH TRIANGULATIONS APPROXIMATE THE COMPLETE GRAPH? , 2022 .
[40] Michiel H. M. Smid,et al. Randomized and deterministic algorithms for geometric spanners of small diameter , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[41] Carl Gutwin,et al. The Delauney Triangulation Closely Approximates the Complete Euclidean Graph , 1989, WADS.
[42] Giri Narasimhan,et al. Improved Algorithms for Constructing Fault-Tolerant Spanners , 2001, Algorithmica.
[43] Shay Solomon. From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics , 2014, STOC.
[44] Tamás Lukovszki,et al. New Results of Fault Tolerant Geometric Spanners , 1999, WADS.
[45] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[46] Giri Narasimhan,et al. A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..