Improved Electrochemical Performance of Cu3B2O6-Based Conversion Model Electrodes by Composite Formation with Different Carbon Additives

[1]  Li Jiang,et al.  Electrochemical impedance spectroscopy investigation of the FeF3/C cathode for lithium-ion batteries , 2012 .

[2]  J. Eckert,et al.  Study of the Conversion Reaction Mechanism for Copper Borate as Electrode Material in Lithium-Ion Batteries , 2011 .

[3]  K. R. Lee,et al.  Compressive dynamic scission of carbon nanotubes under sonication: fracture by atomic ejection , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[5]  H. Byrne,et al.  Ultrasound-Assisted SWNTs Dispersion: Effects of Sonication Parameters and Solvent Properties , 2010 .

[6]  Jiali Zhang,et al.  Reduction of graphene oxide via L-ascorbic acid. , 2010, Chemical communications.

[7]  Marnix Wagemaker,et al.  The Role of Surface and Interface Energy on Phase Stability of Nanosized Insertion Compounds , 2009, Advanced materials.

[8]  M. Armand,et al.  Building better batteries , 2008, Nature.

[9]  Mark N. Obrovac,et al.  Alloy Design for Lithium-Ion Battery Anodes , 2007 .

[10]  P. Srivastava,et al.  Growth of Nitrogen‐Containing Carbon Nanotubes by Thermal Chemical Vapor Deposition , 2007 .

[11]  R. Krupke,et al.  The mechanism of cavitation-induced scission of single-walled carbon nanotubes. , 2007, The journal of physical chemistry. B.

[12]  Siqi Shi,et al.  Improving the rate performance of LiFePO4 by Fe-site doping , 2005 .

[13]  S. Pejovnik,et al.  Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO4 / C Composites , 2005 .

[14]  Michael S Strano,et al.  Concomitant length and diameter separation of single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.

[15]  Sun-Yuan Tsay,et al.  Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route , 2004 .

[16]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[17]  J. Dahn,et al.  Reducing Carbon in LiFePO4 / C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density , 2002 .

[18]  J. Tarascon,et al.  A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made CuO Particles toward Lithium , 2001 .

[19]  T. Roisnel,et al.  WinPLOTR: A Windows Tool for Powder Diffraction Pattern Analysis , 2001 .

[20]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[21]  Aniruddha B. Pandit,et al.  Cavitation Reaction Engineering , 1999 .

[22]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[23]  H. Behm Pentadecacopper(II) bisdiborate hexaorthoborate dioxide , 1982 .

[24]  Hill Formula Name,et al.  Data extract from Landolt-Börnstein IV/17: Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures , 2008 .

[25]  Prashant N. Kumta,et al.  Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries , 2007 .

[26]  J. Jumas,et al.  Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4 , 2003 .

[27]  YoungJung Chang,et al.  Electrochemical Impedance Analysis for Lithium Ion Intercalation into Graphitized Carbons , 2000 .

[28]  J. Nagy,et al.  Fe-catalyzed carbon nanotube formation , 1996 .