A Testing Environment for Continuous Colormaps

Many computer science disciplines (e.g., combinatorial optimization, natural language processing, and information retrieval) use standard or established test suites for evaluating algorithms. In visualization, similar approaches have been adopted in some areas (e.g., volume visualization), while user testimonies and empirical studies have been the dominant means of evaluation in most other areas, such as designing colormaps. In this paper, we propose to establish a test suite for evaluating the design of colormaps. With such a suite, the users can observe the effects when different continuous colormaps are applied to planar scalar fields that may exhibit various characteristic features, such as jumps, local extrema, ridge or valley lines, different distributions of scalar values, different gradients, different signal frequencies, different levels of noise, and so on. The suite also includes an expansible collection of real-world data sets including the most popular data for colormap testing in the visualization literature. The test suite has been integrated into a web-based application for creating continuous colormaps (https://ccctool.com/), facilitating close inter-operation between design and evaluation processes. This new facility complements traditional evaluation methods such as user testimonies and empirical studies.

[1]  Ali Pinar,et al.  A provably-robust sampling method for generating colormaps of large data , 2013, 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV).

[2]  Samuel S. Silva,et al.  Using color in visualization: A survey , 2011, Comput. Graph..

[3]  Charles D. Hansen,et al.  A Survey of Colormaps in Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[4]  Colin Ware,et al.  Color sequences for univariate maps: theory, experiments and principles , 1988, IEEE Computer Graphics and Applications.

[5]  Franz Rendl,et al.  QAPLIB – A Quadratic Assignment Problem Library , 1997, J. Glob. Optim..

[6]  Daniel A. Keim,et al.  A survey and task-based quality assessment of static 2D colormaps , 2015, Electronic Imaging.

[7]  Gerik Scheuermann,et al.  The Making of Continuous Colormaps , 2019, IEEE Transactions on Visualization and Computer Graphics.

[8]  Penny Rheingans Task-based color scale design , 2000, Applied Imaging Pattern Recognition.

[9]  B. Stevens,et al.  The Added Value of Large-eddy and Storm-resolving Models for Simulating Clouds and Precipitation , 2020 .

[10]  David Borland,et al.  Collaboration-Specific Color-Map Design , 2011, IEEE Computer Graphics and Applications.

[11]  E. D. Montag,et al.  Perceptual color scales for univariate and bivariate data display , 2006 .

[12]  Min Chen,et al.  Categorical Colormap Optimization with Visualization Case Studies , 2017, IEEE Transactions on Visualization and Computer Graphics.

[13]  B. Mandelbrot FRACTAL ASPECTS OF THE ITERATION OF z →Λz(1‐ z) FOR COMPLEX Λ AND z , 1980 .

[14]  Andreas Ritter,et al.  Handbook Of Test Problems In Local And Global Optimization , 2016 .

[15]  James P. Ahrens,et al.  Colormaps that Improve Perception of High-Resolution Ocean Data , 2015, CHI Extended Abstracts.

[16]  M. Luo,et al.  The development of the CIE 2000 Colour Difference Formula , 2001 .

[17]  Hans Hagen,et al.  A Survey of Topology‐based Methods in Visualization , 2016, Comput. Graph. Forum.

[18]  Bernice E. Rogowitz,et al.  The "Which Blair project": a quick visual method for evaluating perceptual color maps , 2001, Proceedings Visualization, 2001. VIS '01..

[19]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[20]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[21]  Erik Reinhard,et al.  Face-based luminance matching for perceptual colormap generation , 2002, IEEE Visualization, 2002. VIS 2002..

[22]  James P. Ahrens,et al.  The Good, the Bad, and the Ugly: A Theoretical Framework for the Assessment of Continuous Colormaps , 2018, IEEE Transactions on Visualization and Computer Graphics.

[23]  Xin-She Yang,et al.  A literature survey of benchmark functions for global optimisation problems , 2013, Int. J. Math. Model. Numer. Optimisation.

[24]  Bernice E. Rogowitz,et al.  How not to lie with visualization , 1996 .

[25]  J. Marsden,et al.  Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows , 2005 .

[26]  Roxana Bujack,et al.  Evaluating the Perceptual Uniformity of Color Sequences for Feature Discrimination , 2017, EuroRV³@EuroVis.

[27]  Klaus Mueller,et al.  Color Design for Illustrative Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[28]  John B. Zimmerman,et al.  Concepts of the Display of Medical Images , 1982, IEEE Transactions on Nuclear Science.

[29]  Ken Perlin,et al.  An image synthesizer , 1988 .

[30]  Ken Perlin,et al.  Improving noise , 2002, SIGGRAPH.

[31]  Daniel A. Keim,et al.  Methods for Compensating Contrast Effects in Information Visualization , 2014, Comput. Graph. Forum.

[32]  Bernice E. Rogowitz,et al.  A rule-based tool for assisting colormap selection , 1995, Proceedings Visualization '95.

[33]  Haim Levkowitz,et al.  The Design and Evaluation of Color Scales for Image Data , 1992 .

[34]  Philip K. Robertson,et al.  The Generation of Color Sequences for Univariate and Bivariate Mapping , 1986, IEEE Computer Graphics and Applications.

[35]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[36]  Heidrun Schumann,et al.  Enhancing Visual Exploration by Appropriate Color Coding , 2005, WSCG.

[37]  Patrick J. Bartlein,et al.  The end of the rainbow? Color schemes for improved data graphics , 2004 .

[38]  Heidrun Schumann,et al.  Task-Driven Color Coding , 2008, 2008 12th International Conference Information Visualisation.

[39]  Kurt Hornik,et al.  Escaping RGBland: Selecting colors for statistical graphics , 2009, Comput. Stat. Data Anal..

[40]  Bernice E. Rogowitz,et al.  Using perceptual rules in interactive visualization , 1994, Electronic Imaging.

[41]  Kenneth Moreland,et al.  Diverging Color Maps for Scientific Visualization , 2009, ISVC.

[42]  Daniel A. Keim,et al.  ColorCAT: Guided Design of Colormaps for Combined Analysis Tasks , 2015, EuroVis.

[43]  Johji Tajima Uniform color scale applications to computer graphics , 1982, Comput. Graph. Image Process..

[44]  Georgia Albuquerque,et al.  Data Driven Color Mapping , 2011, EuroVA@EuroVis.

[45]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[46]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[47]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .

[48]  Bernice E. Rogowitz,et al.  Which Trajectories Through Which Perceptually Uniform Color Spaces Produce Appropriate Colors Scales for Interval Data? (Invited Paper) , 1999, CIC.

[49]  Stephen M. Pizer,et al.  Intensity mappings to linearize display devices , 1981 .

[50]  Russell M. Taylor,et al.  Rainbow Color Map (Still) Considered Harmful , 2007, IEEE Computer Graphics and Applications.

[51]  H. Wainer,et al.  An Empirical Inquiry concerning Human Understanding of Two-Variable Color Maps , 1980 .

[52]  Kenneth R. Sloan,et al.  Color map techniques , 1979 .

[53]  Bernice E. Rogowitz,et al.  Data visualization: the end of the rainbow , 1998 .

[54]  Bernice E. Rogowitz,et al.  Building perceptual color maps for visualizing interval data , 2000, Electronic Imaging.

[55]  Samuel S. Silva,et al.  There is More to Color Scales than Meets the Eye: A Review on the Use of Color in Visualization , 2007, 2007 11th International Conference Information Visualization (IV '07).

[56]  Bernice E. Rogowitz,et al.  Task dependence, veridicality, and preattentive vision: taking advantage of perceptually rich computer environments , 1992, Electronic Imaging.

[57]  Roxana Bujack,et al.  Intuitive Colormaps for Environmental Visualization , 2017, EnvirVis@EuroVis.