Unraveling the Complexity of Catalytic Reactions via Kinetic Monte Carlo Simulation: Current Status and Frontiers

Over the past two decades, the necessity for predictive models of chemical kinetics on catalytic surfaces has motivated the development of ab initio kinetic Monte Carlo (KMC) simulation frameworks. These frameworks have been successfully used to investigate chemistries of academic interest and industrial importance, such as CO oxidation, NO oxidation and reduction, ethylene hydrogenation, CO hydrogenation to ethanol, and water-gas shift. These studies have shed light on the effect of catalyst composition, surface structure, lateral interactions, and operating conditions on the apparent turnover frequency of the chemistries of interest. Yet, extending the existing KMC approaches to study large chemistries on complex catalytic structures poses several challenges. In this review, we discuss the recent milestones in the area of KMC simulation of chemical kinetics on catalytic surfaces and review a number of studies that have furthered our fundamental understanding of specific chemistries. In addition, we prov...

[1]  Toshiaki Ohta,et al.  CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates. , 2007, The Journal of chemical physics.

[2]  L. Pismen,et al.  Realistic kinetic Monte Carlo study of the surface phase reconstruction. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  John P. Perdew,et al.  Jacob’s ladder of density functional approximations for the exchange-correlation energy , 2001 .

[4]  F. Ducastelle,et al.  Generalized cluster description of multicomponent systems , 1984 .

[5]  Johan Hattne,et al.  Stochastic reaction-diffusion simulation with MesoRD , 2005, Bioinform..

[6]  J. Cortés,et al.  Interpretation of the experimental data on the reduction reaction of NO by CO on rhodium by Monte Carlo simulations and by solving the kinetic equations of the reaction mechanism. , 2006, The journal of physical chemistry. B.

[7]  Muruhan Rathinam,et al.  Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks. , 2010, The Journal of chemical physics.

[8]  Babatunde A. Ogunnaike,et al.  A hybrid multiscale Monte Carlo algorithm (HyMSMC) to cope with disparity in time scales and species populations in intracellular networks , 2007, BMC Bioinformatics.

[9]  F. Baras,et al.  Microscopic simulations of chemical instabilities , 1997 .

[10]  Donghai Mei,et al.  First-Principles-Based Kinetic Monte Carlo Simulation of Nitric Oxide Reduction over Platinum Nanoparticles under Lean-Burn Conditions , 2010 .

[11]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[12]  Donghai Mei,et al.  Effects of Alloying Pd and Au on the Hydrogenation of Ethylene: An ab initio-Based Dynamic Monte Carlo Study , 2002 .

[13]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[14]  Jpl John Segers,et al.  Efficient Monte Carlo methods for the simulation of catalytic surface reactions , 1998 .

[15]  Harm Hinrich Rotermund,et al.  Reaction diffusion patterns in the catalytic CO‐oxidation on Pt(110): Front propagation and spiral waves , 1993 .

[16]  R. Drautz,et al.  Cluster expansion technique: An efficient tool to search for ground-state configurations of adatoms on plane surfaces , 2003 .

[17]  G. Kresse,et al.  The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies , 2008, 0805.1532.

[18]  James W. Evans,et al.  Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds , 2006 .

[19]  V. Blum,et al.  Accuracy of first-principles lateral interactions: Oxygen at Pd(100) , 2007, cond-mat/0701549.

[20]  A. Jansen,et al.  Dynamic Monte-Carlo simulations of reactions in heterogeneous catalysis , 1999 .

[21]  Dionisios G. Vlachos,et al.  Front propagation at low temperatures and multiscale modeling for the catalytic combustion of H2 on Pt , 2003 .

[22]  Rachel B. Getman,et al.  Oxygen-coverage effects on molecular dissociations at a Pt metal surface. , 2009, Physical review letters.

[23]  D. Vlachos,et al.  Recent developments on multiscale, hierarchical modeling of chemical reactors , 2002 .

[24]  M. Neurock,et al.  An ab initio analysis of adsorption and diffusion of silver atoms on partially hydroxylated α-Al2O3(0 0 0 1) surfaces , 2007 .

[25]  Daan Frenkel,et al.  The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. , 2004, Physical review letters.

[26]  J. Cortés,et al.  Monte Carlo studies of the dynamic behavior of the reduction reaction of NO by CO over a surface of clusters supported on a fractal. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Sebastian Matera,et al.  Examination of the concept of degree of rate control by first-principles kinetic Monte Carlo simulations , 2009 .

[28]  Donghai Mei,et al.  Ethylene hydrogenation over bimetallic Pd/Au(111) surfaces: Application of quantum chemical results and dynamic Monte Carlo simulation , 2003 .

[29]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[30]  Gus L. W. Hart,et al.  Using genetic algorithms to map first-principles results to model Hamiltonians: Application to the generalized Ising model for alloys , 2005 .

[31]  Mohammad-Ali Malek-Mansour,et al.  A new approximation scheme for the study of fluctuations in nonuniform nonequilibrium systems , 1979 .

[32]  Dionisios G. Vlachos,et al.  Equivalence of on-lattice stochastic chemical kinetics with the well-mixed chemical master equation in the limit of fast diffusion , 2011, Comput. Chem. Eng..

[33]  M. Scheffler,et al.  First-Principles Theory of Surface Thermodynamics and Kinetics , 1999, cond-mat/9908213.

[34]  D. King,et al.  Massively cooperative adsorbate-induced surface restructuring and nanocluster formation. , 2007, Angewandte Chemie.

[35]  Steven T. Evans,et al.  Mechanism of the Water Gas Shift Reaction on Pt: First Principles, Experiments, and Microkinetic Modeling , 2008 .

[36]  Matthew Neurock,et al.  Predicting lateral surface interactions through density functional theory: application to oxygen on Rh(100) , 1999 .

[37]  William F. Schneider,et al.  Accurate coverage-dependence incorporated into first-principles kinetic models: Catalytic NO oxidation on Pt (1 1 1) , 2012 .

[38]  E Weinan,et al.  Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales , 2007, J. Comput. Phys..

[39]  D. Vlachos,et al.  Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction , 2010, Nature Chemistry.

[40]  M. Rafti,et al.  Catalytic reduction of NO with NH3 on a Pt(100) surface: Monte Carlo simulations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  D. Vlachos Multiscale integration hybrid algorithms for homogeneous–heterogeneous reactors , 1997 .

[42]  Frank R. Wagner,et al.  The CO/Pt(111) puzzle , 2000 .

[43]  M. Scheffler,et al.  First-principles kinetic Monte Carlo simulations for heterogeneous catalysis : Application to the Co oxidation at RuO2(110) , 2005, cond-mat/0510234.

[44]  V. Zhdanov Simulation of surface restructuring and oscillations in CO–NO reaction on Pt(100) , 1999 .

[45]  Anton Van der Ven,et al.  Phase diagram of oxygen adsorbed on platinum (111) by first-principles investigation , 2004 .

[46]  S. Müller,et al.  Adsorbate cluster expansion for an arbitrary number of inequivalent sites , 2008 .

[47]  Marie-Françoise Reyniers,et al.  First-principles kinetic modeling in heterogeneous catalysis: an industrial perspective on best-practice, gaps and needs , 2012 .

[48]  I. Irurzun,et al.  Mathematical modeling of the NH3+NO reaction on Pt{100} , 2006 .

[49]  A. Seitsonen,et al.  Intimate interplay of theory and experiments in model catalysis , 2009 .

[50]  Abhijit Chatterjee,et al.  An overview of spatial microscopic and accelerated kinetic Monte Carlo methods , 2007 .

[51]  Talat S. Rahman,et al.  Self-learning kinetic Monte Carlo method: Application to Cu(111) , 2005 .

[52]  C. Broeck A stochastic derivation of the multivariate master equation describing reaction diffusion systems , 1982 .

[53]  Dionisios G. Vlachos,et al.  Microkinetic Modeling for Water-Promoted CO Oxidation, Water−Gas Shift, and Preferential Oxidation of CO on Pt , 2004 .

[54]  Jeffery K Ludwig,et al.  Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling. , 2007, The Journal of chemical physics.

[55]  Attila Farkas,et al.  “First‐Principles” kinetic monte carlo simulations revisited: CO oxidation over RuO2(110) , 2012, J. Comput. Chem..

[56]  M. Barteau,et al.  Reactions of carboxylic acids on the Pd(111)-(2 × 2)O surface: multiple roles of surface oxygen atoms , 1991 .

[57]  V. Zhdanov Oscillations in the NO-CO Reaction on Pt(100): NO Decomposition on Island Boundaries , 2002 .

[58]  W. Ahmad,et al.  The effect of inactive impurities on a surface in NO–CO reaction: A Monte Carlo simulation , 2007 .

[59]  Linda J. Broadbelt,et al.  Generic Monte Carlo Tool for Kinetic Modeling , 2001 .

[60]  Shawn M. Kathmann,et al.  Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: A combined experimental and theoretical modeling study , 2010 .

[61]  D G Vlachos,et al.  Overcoming stiffness in stochastic simulation stemming from partial equilibrium: a multiscale Monte Carlo algorithm. , 2005, The Journal of chemical physics.

[62]  R. Forcade,et al.  UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input , 2009 .

[63]  Maria Flytzani-Stephanopoulos,et al.  Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts , 2000 .

[64]  F Mittendorfer,et al.  Accurate surface and adsorption energies from many-body perturbation theory. , 2010, Nature materials.

[65]  Donghai Mei,et al.  Hydrogenation of acetylene–ethylene mixtures over Pd and Pd–Ag alloys: First-principles-based kinetic Monte Carlo simulations , 2009 .

[66]  Mikhailov,et al.  Delay-induced chaos in catalytic surface reactions: NO reduction on Pt(100). , 1995, Physical review letters.

[67]  Sebastian Matera,et al.  Transport limitations and bistability for in situ CO oxidation at RuO2(110): First-principles based multiscale modeling , 2010 .

[68]  Eric Vanden-Eijnden,et al.  Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. , 2005, The Journal of chemical physics.

[69]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[70]  Phase diagram and adsorption-desorption kinetics of CO on Ru(0001) from first principles. , 2007, The Journal of chemical physics.

[71]  D. Vlachos,et al.  Molecular dynamics of hydrogen dissociation on an oxygen covered Pt(111) surface. , 2008, The Journal of chemical physics.

[72]  J. Wagner,et al.  Water Gas Shift Catalysis , 2009 .

[73]  N. V. Petrova,et al.  Monte Carlo simulation of CO and O coadsorption and reaction on Pt(111) , 2005 .

[74]  M. Tammaro,et al.  Reactive removal of unstable mixed NO+CO adlayers: Chemical diffusion and reaction front propagation , 1998 .

[75]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[76]  J. Wintterlin,et al.  CO oxidation on Pt(111)—Scanning tunneling microscopy experiments and Monte Carlo simulations , 2001 .

[77]  J. Kitchin,et al.  Uncertainty and figure selection for DFT based cluster expansions for oxygen adsorption on Au and Pt (111) surfaces , 2009 .

[78]  D. Duca,et al.  Monte Carlo Simulation of Ethylene Hydrogenation on Pt Catalysts , 1996 .

[79]  TPD study of NO decomposition on Rh(111) by dynamic Monte Carlo simulation , 2010 .

[80]  F. Mittendorfer,et al.  Kinetic Monte Carlo simulations of temperature programed desorption of O/Rh(111). , 2010, The Journal of chemical physics.

[81]  C. Stampfl Surface processes and phase transitions from ab initio atomistic thermodynamics and statistical mechanics , 2005 .

[82]  Gus L. W. Hart,et al.  Evolutionary approach for determining first-principles hamiltonians , 2005, Nature materials.

[83]  D. Vlachos A Review of Multiscale Analysis: Examples from Systems Biology, Materials Engineering, and Other Fluid–Surface Interacting Systems , 2005 .

[84]  Matthew Neurock,et al.  First-Principles-Based Monte Carlo Simulation of Ethylene Hydrogenation Kinetics on Pd , 2000 .

[85]  A. Gross,et al.  Kinetic Monte Carlo simulations of the partial oxidation of methanol on oxygen-covered Cu(110) , 2006 .

[86]  William F. Schneider,et al.  Performance of Cluster Expansions of Coverage-Dependent Adsorption of Atomic Oxygen on Pt(111). , 2012, Journal of chemical theory and computation.

[87]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[88]  M. Barteau,et al.  Hydrogen bonding in carboxylic acid adlayers on Pd(111): evidence for catemer formation , 1989 .

[89]  J. Lauterbach,et al.  Spatiotemporal patterns during CO oxidation on Pt(100) at elevated pressures , 2001 .

[90]  Q. Ge,et al.  An ab initio analysis of adsorption and diffusion of silver atoms on alumina surfaces , 2007 .

[91]  M. Mavrikakis,et al.  Alloy catalysts designed from first principles , 2004, Nature materials.

[92]  I. Kornhauser,et al.  Dynamic Monte Carlo simulation of oscillations and pattern formation during the NO + CO reaction on the Pt(100) surface , 2006 .

[93]  A. van de Walle,et al.  Automating First-Principles Phase Diagram Calculations , 2002 .

[94]  D. Vlachos,et al.  Microkinetic modeling of Pt-catalyzed ethylene glycol steam reforming , 2012 .

[95]  G. Ertl Reactions at surfaces: from atoms to complexity (Nobel Lecture). , 2008, Angewandte Chemie.

[96]  R. Madix,et al.  The selective oxidation of CH3OH to H2CO on a copper(110) catalyst , 1978 .

[97]  Atsuto Seko,et al.  Cluster expansion method for multicomponent systems based on optimal selection of structures for density-functional theory calculations , 2009 .

[98]  Paj Peter Hilbers,et al.  Quantifying lateral adsorbate interactions by kinetic Monte-Carlo simulations and density-functional theory: NO dissociation on Rh(100) , 2004 .

[99]  G. Ertl,et al.  The mechanism of kinetic oscillations in the NO + CO reaction on Pt(100) , 1991 .

[100]  V. Zhdanov Kinetic Oscillations on nm-Sized Catalyst Particles: NO Reduction by CO on Pt , 2004 .

[101]  M. Neurock,et al.  First-principles based kinetic simulations of acetic acid temperature programmed reaction on Pd(111) , 2001 .

[102]  V. Zhdanov,et al.  Role of steps in the NO–CO reaction on the (111) surface of noble metals , 2003 .

[103]  J. Hafner,et al.  CO adsorption on close-packed transition and noble metal surfaces: trends from ab initio calculations , 2004 .

[104]  Sebastian Matera,et al.  Adlayer inhomogeneity without lateral interactions: rationalizing correlation effects in CO oxidation at RuO2(110) with first-principles kinetic Monte Carlo. , 2011, The Journal of chemical physics.

[105]  L. Pismen,et al.  A realistic kinetic Monte Carlo simulation of the faceting of a Pt(110) surface under reaction conditions. , 2004, The Journal of chemical physics.

[106]  Matthew Neurock,et al.  First-principles-based molecular simulation of heterogeneous catalytic surface chemistry , 1998 .

[107]  Karsten Reuter,et al.  Effect of surface nanostructure on temperature programmed reaction spectroscopy: first-principles kinetic monte Carlo simulations of CO oxidation at RuO2(110). , 2008, Physical review letters.

[108]  M. Stamatakis,et al.  Multiscale modeling reveals poisoning mechanisms of MgO-supported Au clusters in CO oxidation. , 2012, Nano letters.

[109]  Thomas Bligaard,et al.  The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .

[110]  Gerhard Ertl,et al.  Kinetic oscillations in the NO + CO reaction on Pt(100): Experiments and mathematical modeling , 1991 .

[111]  M. Neurock,et al.  Modeling surface kinetics with first-principles-based molecular simulation , 1999 .

[112]  R. Aris,et al.  The effect of phase transitions, surface diffusion, and defects on heterogeneous reactions: multiplicities and fluctuations , 1991 .

[113]  Notker Rösch,et al.  Ethylene conversion to ethylidyne on Pd(111) and Pt(111): A first-principles-based kinetic Monte Carlo study , 2012 .

[114]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[115]  Surface structure sensitivity of the water-gas shift reaction on Cu(hkl) surfaces: A theoretical study , 2003 .

[116]  Oleg Trushin,et al.  Off-lattice self-learning kinetic Monte Carlo: application to 2D cluster diffusion on the fcc(111) surface , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[117]  J. Cortés,et al.  Monte Carlo Simulations of a Recent Kinetics Mechanism for the Reduction Reaction of NO by CO on Percolation Clusters , 2008 .

[118]  P. Cobden,et al.  Oscillatory behaviour of the reduction of nitric oxide by ammonia over the Pt(100) single-crystal surface: the role of oxygen, comparison with the NOH2 reaction and a general reaction mechanism for NO reduction by NH3 over Pt , 1992 .

[119]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[120]  Vassilios Sotiropoulos,et al.  Multiscale Hy3S: Hybrid stochastic simulation for supercomputers , 2006, BMC Bioinformatics.

[121]  G. Zgrablich,et al.  Study of oscillations and pattern formation in the NO + CO reaction on Pt(100) surfaces through dynamic Monte Carlo simulation: toward a realistic model. , 2006, The journal of physical chemistry. B.

[122]  M. Stamatakis,et al.  Understanding mixing of Ni and Pt in the Ni/Pt(111) bimetallic catalyst via molecular simulation and experiments. , 2010, The Journal of chemical physics.

[123]  Hakim Meskine,et al.  Does phenomenological kinetics provide an adequate description of heterogeneous catalytic reactions? , 2007, The Journal of chemical physics.

[124]  G. A. Bird,et al.  Direct simulation of gas flows at the molecular level , 1988 .

[125]  Ralf Drautz,et al.  Obtaining cluster expansion coefficients in ab initio thermodynamics of multicomponent lattice-gas systems , 2006 .

[126]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[127]  Michail Stamatakis,et al.  First-Principles-Based Kinetic Monte Carlo Simulation of the Structure Sensitivity of the Water–Gas Shift Reaction on Platinum Surfaces , 2011 .

[128]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[129]  A. van de Walle,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002 .

[130]  Jacob A. McGill,et al.  Efficient gradient estimation using finite differencing and likelihood ratios for kinetic Monte Carlo simulations , 2012, J. Comput. Phys..

[131]  J. Dumesic,et al.  Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water , 2002, Nature.

[132]  Georg Kresse,et al.  Comparison of the full-potential and frozen-core approximation approaches to density-functional calculations of surfaces , 2005, cond-mat/0509014.

[133]  D. J. Mowbray,et al.  Trends in CO Oxidation Rates for Metal Nanoparticles and Close-Packed, Stepped, and Kinked Surfaces , 2009 .

[134]  R. Ziff,et al.  Kinetic phase transitions in an irreversible surface-reaction model. , 1986, Physical review letters.

[135]  Guang Lin,et al.  Effects of heat and mass transfer on the kinetics of CO oxidation over RuO2(110) catalyst , 2011 .

[136]  W. H. Weinberg,et al.  Monte Carlo simulations of temperature programmed desorption spectra , 1994 .

[137]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[138]  F. Keil,et al.  Phase diagram of oxygen adsorbed on Ni(111) and thermodynamic properties from first-principles , 2009 .

[139]  Astero Provata,et al.  Surface reconstruction in reactive dynamics : A kinetic Monte Carlo approach , 2007 .

[140]  Sebastian Matera,et al.  First-Principles Approach to Heat and Mass Transfer Effects in Model Catalyst Studies , 2009, 0909.4261.

[141]  E. Baerends,et al.  CO on Pt(111): A puzzle revisited , 2003 .

[142]  Sharif Rahman,et al.  Global sensitivity analysis by polynomial dimensional decomposition , 2011, Reliab. Eng. Syst. Saf..

[143]  Zachary W. Ulissi,et al.  Effect of multiscale model uncertainty on identification of optimal catalyst properties , 2011 .

[144]  Yoshiki Kuramoto,et al.  Effects of Diffusion on the Fluctuations in Open Chemical Systems , 1974 .

[145]  Yiannis Kaznessis,et al.  Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. , 2005, The Journal of chemical physics.

[146]  V. Zhdanov,et al.  Kinetic phase transitions in simple reactions on solid surfaces , 1994 .

[147]  A. B. Bortz,et al.  A new algorithm for Monte Carlo simulation of Ising spin systems , 1975 .

[148]  Thomas Bligaard,et al.  Trends in the catalytic CO oxidation activity of nanoparticles. , 2008, Angewandte Chemie.

[149]  Matthias Scheffler,et al.  CO oxidation on Pd(100) at technologically relevant pressure conditions: First-principles kinetic Monte Carlo study , 2008, 0802.0553.

[150]  V. Kuzovkov,et al.  Oscillation Phenomena Leading to Chaos in a Stochastic Surface Reaction Model , 1998 .

[151]  G. Somorjai Surface Reconstruction and Catalysis , 1994 .

[152]  Da‐Jiang Liu,et al.  Interactions between oxygen atoms on Pt(100): implications for ordering during chemisorption and catalysis. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[153]  B S Clausen,et al.  Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. , 2001, Journal of the American Chemical Society.

[154]  W. H. Weinberg,et al.  Modeling the Kinetics of Heterogeneous Catalysis , 1995 .

[155]  Michail Stamatakis,et al.  A graph-theoretical kinetic Monte Carlo framework for on-lattice chemical kinetics. , 2011, The Journal of chemical physics.

[156]  Charles T. Campbell,et al.  Finding the Rate-Determining Step in a Mechanism: Comparing DeDonder Relations with the “Degree of Rate Control” , 2001 .

[157]  Matthew Neurock,et al.  First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd(111) , 2006 .

[158]  M. Stamatakis,et al.  A review of multiscale modeling of metal-catalyzed reactions: Mechanism development for complexity and emergent behavior , 2011 .

[159]  Predicting order-disorder phase transitions of O/Pd(111) from ab initio Wang-Landau Monte Carlo calculations , 2010 .

[160]  James W. Evans,et al.  Atomistic and multiscale modeling of CO-oxidation on Pd(1 0 0) and Rh(1 0 0): From nanoscale fluctuations to mesoscale reaction fronts , 2009 .

[161]  Gerbrand Ceder,et al.  Surface segregation and ordering of alloy surfaces in the presence of adsorbates , 2005 .