Directed self-assembly of quantum structures by nanomechanical stamping using probe tips

We demonstrate that nanomechanically stamped substrates can be used as templates to pattern and direct the self-assembly of epitaxial quantum structures such as quantum dots. Diamond probe tips are used to indent or stamp the surface of GaAs(100) to create nanoscale volumes of dislocation-mediated deformation, which alter the growth surface strain. These strained sites act to bias nucleation, hence allowing for selective growth of InAs quantum dots. Patterns of quantum dots are observed to form above the underlying nanostamped template. The strain state of the patterned structures is characterized by micro-Raman spectroscopy. The potential of using nanoprobe tips as a quantum dot nanofabrication technology are discussed.

[1]  F. Ponce,et al.  Atomic force nanolithography of InP for site control growth of InAs nanostructures , 2007 .

[2]  Chad A Mirkin,et al.  Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays. , 2006, Angewandte Chemie.

[3]  D. Pal,et al.  Uniformity assessment of key characteristics of quantum-dot infrared detectors: A prerequisite for focal plane arrays , 2006 .

[4]  Ajay P. Malshe,et al.  Characterization of ultra-low-load (µN) nanoindents in GaAs(100) using a cube corner tip , 2005 .

[5]  Ajay P. Malshe,et al.  Nanoscale dislocation patterning by ultralow load indentation , 2005 .

[6]  M. Drndić,et al.  CdSe nanocrystal quantum-dot memory , 2005 .

[7]  Yi Zhang,et al.  Integrated semiconductor nanocrystal and epitaxical nanostructure systems: structural and optical behavior. , 2005, Nano letters.

[8]  Siddhartha Ghosh,et al.  QUANTUM DOT OPTO-ELECTRONIC DEVICES , 2004 .

[9]  R. Bose,et al.  Nanoindentation effect on the optical properties of self-assembled quantum dots , 2003 .

[10]  M. Reuter,et al.  In-Situ Focused Ion Beam Micropatterning of Ge Islands , 2003, Microscopy and Microanalysis.

[11]  Frank Fournel,et al.  Ordering of Ge quantum dots with buried Si dislocation networks , 2002 .

[12]  W. Häberle,et al.  The "millipede" - nanotechnology entering data storage , 2002 .

[13]  S. J. Lloyd,et al.  Deformation under nanoindents in Si, Ge, and GaAs examined through transmission electron microscopy , 2001 .

[14]  M. Swain,et al.  Mechanical deformation of InP and GaAs by spherical indentation , 2001 .

[15]  Dieter Bimberg,et al.  Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers , 2001 .

[16]  Hartmut S. Leipner,et al.  Dislocation-related pop-in effect in gallium arsenide , 2001 .

[17]  K. Asakawa,et al.  Site control of InAs quantum dots on GaAs surfaces patterned by in situ electron-beam lithography , 2000 .

[18]  K. Wiesauer,et al.  Fabrication of semiconductor nanostructures by nanoindentation of photoresist layers using atomic force microscopy , 2000 .

[19]  Eun Kyu Kim,et al.  Application of atomic-force-microscope direct patterning to selective positioning of InAs quantum dots on GaAs , 2000 .

[20]  Frances M. Ross,et al.  Growth processes and phase transformations studied in situ transmission electron microscopy , 2000, IBM J. Res. Dev..

[21]  G. Patriarche,et al.  Transmission electron microscopy observations of low-load indents in GaAs , 1999 .

[22]  Jung ho Park,et al.  FABRICATION AND ELECTRICAL CHARACTERIZATION OF PLANAR RESONANT TUNNELING DEVICES INCORPORATING INAS SELF-ASSEMBLED QUANTUM DOTS , 1999 .

[23]  Tomonori Ishikawa,et al.  Site control of self-organized InAs dots on GaAs substrates by in situ electron-beam lithography and molecular-beam epitaxy , 1998 .

[24]  R. B. Irwin,et al.  Transmission electron microscope specimen preparation of Zn powders using the focused ion beam lift-out technique , 1998 .

[25]  K. Shiralagi,et al.  Selective formation and alignment of InAs quantum dots over mesa stripes along the [011] and [001] directions on GaAs (100) substrates , 1998 .

[26]  P. P. González-Borrero,et al.  Raman study of interface modes subjected to strain in InAs/GaAs self-assembled quantum dots , 1998 .

[27]  A. Madhukar,et al.  Fabrication of strained InAs island ensembles on nonplanar patterned GaAs(001) substrates , 1998 .

[28]  A. Madhukar,et al.  Stress-engineered spatially selective self-assembly of strained InAs quantum dots on nonplanar patterned GaAs(001) substrates , 1998 .

[29]  Cusack,et al.  Electronic structure of InAs/GaAs self-assembled quantum dots. , 1996, Physical review. B, Condensed matter.

[30]  M. Lagally,et al.  Self-organization in growth of quantum dot superlattices. , 1996, Physical review letters.

[31]  W. Gerberich,et al.  In situ imaging of μN load indents into GaAs , 1995 .

[32]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[33]  Anupam Madhukar,et al.  Nature of strained InAs three‐dimensional island formation and distribution on GaAs(100) , 1994 .

[34]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[35]  Reinecke,et al.  Classical interface modes of quantum dots. , 1992, Physical review. B, Condensed matter.

[36]  P. Fonjallaz,et al.  Workshop on optical components for broadband communication : 28-29 June 2006, Stockholm, Sweden , 2006 .

[37]  A. Rogalski Infrared detectors: status and trends , 2003 .

[38]  Y. Masumoto,et al.  Semiconductor Quantum Dots , 2002 .

[39]  T. Pearsall Strained-Layer superlattices : physics , 1990 .

[40]  E. Kasper Strained Layer Superlattices , 1987 .

[41]  J. Hirth Theory of Dislocations , 1968 .