Bipartite binomial heaps

We describe a heap data structure that supports Minimum, Insert, and Borrow at O (1) worst-case cost, Delete at O (lg n ) worst-case cost including at most lg n + O (1) element comparisons, and Union at O (lg n ) worst-case cost including at most lg n + O (lglg n ) element comparisons, where n denotes the (total) number of elements stored in the data structure(s) prior to the operation. As the resulting data structure consists of two components that are different variants of binomial heaps, we call it a bipartite binomial heap. Compared to its counterpart, a multipartite binomial heap, the new structure is simpler and mergeable, still retaining the efficiency of the other operations.

[1]  Robert E. Tarjan,et al.  Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel computation , 1988, CACM.

[2]  Mark R. Brown,et al.  Implementation and Analysis of Binomial Queue Algorithms , 1978, SIAM J. Comput..

[3]  Amr Elmasry,et al.  Worst-Case Optimal Priority Queues via Extended Regular Counters , 2011, CSR.

[4]  Amr Elmasry,et al.  Two new methods for constructing double-ended priority queues from priority queues , 2008, Computing.

[5]  Gerth Stølting Brodal,et al.  Fast Meldable Priority Queues , 1995, WADS.

[6]  Amr Elmasry,et al.  Strictly-Regular Number System and Data Structures , 2010, SWAT.

[7]  Jean Vuillemin,et al.  A data structure for manipulating priority queues , 1978, CACM.

[8]  Ronald D. Dutton,et al.  Weak-heap sort , 1993, BIT.

[9]  Amr Elmasry,et al.  Fat Heaps without Regular Counters , 2012, Discret. Math. Algorithms Appl..

[10]  Torben Hagerup,et al.  Sorting and Searching on the Word RAM , 1998, STACS.

[11]  Donald E. Knuth,et al.  A Programming and Problem-Solving Seminar , 1981 .

[12]  Chris Okasaki,et al.  Purely functional data structures , 1998 .

[13]  Haim Kaplan,et al.  Meldable heaps and boolean union-find , 2002, STOC '02.

[14]  Amr Elmasry,et al.  Two-tier relaxed heaps , 2006, Acta Informatica.

[15]  Amr Elmasry,et al.  The weak-heap data structure: Variants and applications , 2012, J. Discrete Algorithms.

[16]  Amr Elmasry,et al.  Multipartite priority queues , 2008, TALG.