Biometrics via Oculomotor Plant Characteristics: Impact of Parameters in Oculomotor Plant Model

This article proposes and evaluates a novel biometric approach utilizing the internal, nonvisible, anatomical structure of the human eye. The proposed method estimates the anatomical properties of the human oculomotor plant from the measurable properties of human eye movements, utilizing a two-dimensional linear homeomorphic model of the oculomotor plant. The derived properties are evaluated within a biometric framework to determine their efficacy in both verification and identification scenarios. The results suggest that the physical properties derived from the oculomotor plant model are capable of achieving 20.3% equal error rate and 65.7% rank-1 identification rate on high-resolution equipment involving 32 subjects, with biometric samples taken over four recording sessions; or 22.2% equal error rate and 12.6% rank-1 identification rate on low-resolution equipment involving 172 subjects, with biometric samples taken over two recording sessions.

[1]  L. Optican,et al.  Dynamic eye plant models and the control of eye movements , 2003, Strabismus.

[2]  Hugo Proença,et al.  Multimodal ocular biometrics approach: A feasibility study , 2012, 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[3]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[4]  G. Aguilar,et al.  Multimodal biometric system using fingerprint , 2007, 2007 International Conference on Intelligent and Advanced Systems.

[5]  Sharath Pankanti,et al.  BIOMETRIC IDENTIFICATION , 2000 .

[6]  Anil K. Jain,et al.  Likelihood Ratio-Based Biometric Score Fusion , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  K. Rayner Eye movements in reading and information processing: 20 years of research. , 1998, Psychological bulletin.

[8]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[9]  Pawel Kasprowski,et al.  Eye Movements in Biometrics , 2004, ECCV Workshop BioAW.

[10]  L. Stark,et al.  Scanpaths in Eye Movements during Pattern Perception , 1971, Science.

[11]  Daniel L. Silver,et al.  Keystroke and Eye-Tracking Biometrics for User Identification , 2006, IC-AI.

[12]  Bahill At,et al.  Development, validation, and sensitivity analyses of human eye movement models. , 1980 .

[13]  Swen Kortig,et al.  Automated Fingerprint Identification Systems Afis , 2016 .

[14]  Joseph H. Goldberg,et al.  Identifying fixations and saccades in eye-tracking protocols , 2000, ETRA.

[15]  M. K. Khan,et al.  Machine identification of human faces , 1981, Pattern Recognition.

[16]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[17]  Brian S. Schnitzer,et al.  Eye movements during multiple readings of the same text , 2006, Vision Research.

[18]  R. Hall,et al.  Relationship of Muscle Apolipoprotein E Expression with Markers of Cellular Stress, Metabolism, and Blood Biomarkers in Cognitively Healthy and Impaired Older Adults , 2023, Journal of Alzheimer's disease : JAD.

[19]  Oleg V. Komogortsev,et al.  Eye movement prediction by Kalman filter with integrated linear horizontal oculomotor plant mechanical model , 2008, ETRA.

[20]  A. Loll,et al.  Automated Fingerprint Identification Systems (AFIS) , 2013 .

[21]  Oleg V. Komogortsev,et al.  Standardization of Automated Analyses of Oculomotor Fixation and Saccadic Behaviors , 2010, IEEE Transactions on Biomedical Engineering.

[22]  Oleg V. Komogortsev,et al.  Biometric identification via eye movement scanpaths in reading , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[23]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[24]  Oleg V. Komogortsev,et al.  Liveness detection via oculomotor plant characteristics: Attack of mechanical replicas , 2013, 2013 International Conference on Biometrics (ICB).

[25]  Ioannis Rigas,et al.  Biometric identification based on the eye movements and graph matching techniques , 2012, Pattern Recognit. Lett..

[26]  John Paulin Hansen,et al.  Low-cost gaze interaction: ready to deliver the promises , 2009, CHI Extended Abstracts.

[27]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[28]  Steven J. Greenwald,et al.  Proceedings of the 2001 workshop on New security paradigms , 2001 .

[29]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[30]  Thorsten Joachims,et al.  SVM Light: Support Vector Machine , 2002 .

[31]  Andrea F. Abate,et al.  2D and 3D face recognition: A survey , 2007, Pattern Recognit. Lett..

[32]  John Daugman,et al.  How iris recognition works , 2002, IEEE Transactions on Circuits and Systems for Video Technology.

[33]  John Michael Williams Biometrics or ... biohazards? , 2002, NSPW '02.

[34]  Diana Adler,et al.  Using Multivariate Statistics , 2016 .

[35]  N. Shimizu [Neurology of eye movements]. , 2000, Rinsho shinkeigaku = Clinical neurology.

[36]  Anil K. Jain,et al.  Periocular biometrics in the visible spectrum: A feasibility study , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[37]  Tomi Kinnunen,et al.  Eye-Movements as a Biometric , 2005, SCIA.

[38]  Cecilia R. Aragon,et al.  Biometric authentication via oculomotor plant characteristics , 2012, 2012 5th IAPR International Conference on Biometrics (ICB).

[39]  H. Hotelling The Generalization of Student’s Ratio , 1931 .

[40]  Oleg V. Komogortsev,et al.  2D Oculomotor Plant Mathematical Model for eye movement simulation , 2008, 2008 8th IEEE International Conference on BioInformatics and BioEngineering.

[41]  A T Bahill,et al.  Development, validation, and sensitivity analyses of human eye movement models. , 1980, Critical reviews in bioengineering.

[42]  Xianggui Qu,et al.  Multivariate Data Analysis , 2007, Technometrics.

[43]  Arun Ross,et al.  Multispectral scleral patterns for ocular biometric recognition , 2012, Pattern Recognit. Lett..

[44]  M. Bartlett Properties of Sufficiency and Statistical Tests , 1992 .

[45]  Oleg V. Komogortsev,et al.  Biometric verification via complex eye movements: The effects of environment and stimulus , 2012, 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[46]  Andrew T. Duchowski,et al.  Eye Tracking Methodology: Theory and Practice , 2003, Springer London.

[47]  Peter D. Komarinski,et al.  Automated Fingerprint Identification Systems , 2006 .

[48]  Mario Baum,et al.  Handbook Of Biometrics , 2016 .