Minimization of divergences on sets of signed measures

We consider the minimization problem of $\phi$-divergences between a given probability measure $P$ and subsets $\Omega$ of the vector space $\mathcal{M}_\mathcal{F}$ of all signed finite measures which integrate a given class $\mathcal{F}$ of bounded or unbounded measurable functions. The vector space $\mathcal{M}_\mathcal{F}$ is endowed with the weak topology induced by the class $\mathcal{F}\cup \mathcal{B}_b$ where $\mathcal{B}_b$ is the class of all bounded measurable functions. We treat the problems of existence and characterization of the $\phi$-projections of $P$ on $\Omega$. We consider also the dual equality and the dual attainment problems when $\Omega$ is defined by linear constraints.

[1]  W. Fenchel On Conjugate Convex Functions , 1949, Canadian Journal of Mathematics.

[2]  Truman Botts,et al.  Conference Board of the Mathematical Sciences , 1978, CACM.

[3]  R. Rockafellar Integrals which are convex functionals. II , 1968 .

[4]  P. Gänssler,et al.  Compactness and sequential compactness in spaces of measures , 1971 .

[5]  R. Tyrrell Rockafellar Conjugate Duality and Optimization , 1974 .

[6]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[7]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[8]  R. Beran Minimum Hellinger distance estimates for parametric models , 1977 .

[9]  Piet Groeneboom,et al.  Large Deviation Theorems for Empirical Probability Measures , 1979 .

[10]  Projections of Probability Measures , 1982 .

[11]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[12]  I. Csiszár Sanov Property, Generalized $I$-Projection and a Conditional Limit Theorem , 1984 .

[13]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[14]  Jonathan M. Borwein,et al.  Convergence of Best Entropy Estimates , 1991, SIAM J. Optim..

[15]  J. Borwein,et al.  Duality relationships for entropy-like minimization problems , 1991 .

[16]  Jonathan M. Borwein,et al.  Partially finite convex programming, Part II: Explicit lattice models , 1992, Math. Program..

[17]  Jonathan M. Borwein,et al.  Partially-Finite Programming in L1 and the Existence of Maximum Entropy Estimates , 1993, SIAM J. Optim..

[18]  Marc Teboulle,et al.  Convergence of best phi-entropy estimates , 1993, IEEE Trans. Inf. Theory.

[19]  B. Lindsay Efficiency versus robustness : the case for minimum Hellinger distance and related methods , 1994 .

[20]  I. Csiszár Generalized projections for non-negative functions , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[21]  I. Vajda,et al.  Asymptotic divergence of estimates of discrete distributions , 1995 .

[22]  Imre Csiszár,et al.  MEM pixel correlated solutions for generalized moment and interpolation problems , 1999, IEEE Trans. Inf. Theory.

[23]  C. Léonard Convex conjugates of integral functionals , 2001 .

[24]  C. Léonard Minimization of Energy Functionals Applied to Some Inverse Problems , 2001 .

[25]  Y. Shao,et al.  On robustness and efficiency of minimum divergence estimators , 2001 .

[26]  Christian Léonard,et al.  Minimizers of energy functionals , 2001 .

[27]  Large deviations of U-empirical measures in strong topologies and applications☆ , 2002 .

[28]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[29]  A. Keziou Dual representation of Φ-divergences and applications , 2003 .

[30]  Amor Keziou Utilisation des Divergences entre Mesures en Statistique Inférentielle , 2003 .

[31]  P. Bertail Empirical Likelihood in Nonparametric and Semiparametric Models , 2004 .

[32]  M. Broniatowski,et al.  ESTIMATION AND TESTS FOR MODELS SATISFYING LINEAR CONSTRAINTS WITH UNKNOWN PARAMETER , 2008, 0811.3477.

[33]  P. Bertail Emirical Likelihood in Some Semiparametric Models , 2006 .