Interfacial heat flow in carbon nanotube suspensions

The enormous amount of basic research into carbon nanotubes has sparked interest in the potential applications of these novel materials. One promising use of carbon nanotubes is as fillers in a composite material to improve mechanical behaviour1,2, electrical transport3,4 and thermal transport5,6. For composite materials with high thermal conductivity, the thermal conductance across the nanotube–matrix interface is of particular interest. Here we use picosecond transient absorption to measure the interface thermal conductance (G) of carbon nanotubes suspended in surfactant micelles in water. Classical molecular dynamics simulations of heat transfer from a carbon nanotube to a model hydrocarbon liquid are in agreement with experiment. Our findings indicate that heat transport in a nanotube composite material will be limited by the exceptionally small interface thermal conductance (G ≈ 12 MW m−2 K−1) and that the thermal conductivity of the composite will be much lower than the value estimated from the intrinsic thermal conductivity of the nanotubes and their volume fraction.

[1]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[2]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[3]  D. Cahill,et al.  Thermal conductance of epitaxial interfaces , 2003 .

[4]  Carter Kittrell,et al.  Reversible, Band-Gap-Selective Protonation of Single-Walled Carbon Nanotubes in Solution , 2003 .

[5]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[6]  V. C. Moore,et al.  The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. , 2003, Journal of nanoscience and nanotechnology.

[7]  Arnold T. Hagler,et al.  An ab Initio CFF93 All-Atom Force Field for Polycarbonates , 1994 .

[8]  Hui-Ming Cheng,et al.  Mechanical and electrical properties of a MWNT/epoxy composite , 2002 .

[9]  Orla M. Wilson,et al.  Colloidal metal particles as probes of nanoscale thermal transport in fluids , 2002 .

[10]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[11]  Quantized phonon spectrum of single-wall carbon nanotubes , 2000, Science.

[12]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[13]  T. Ebbesen,et al.  Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes , 2003, Science.

[14]  C. Voisin,et al.  Ultrafast carrier dynamics in single-wall carbon nanotubes. , 2003, Physical review letters.

[15]  R. Christie,et al.  Strength and Weakness , 2018, The Art of War.

[16]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[17]  P. Bernier,et al.  Electric Transport Properties and Percolation in Carbon Nanotubes / PMMA Composites , 2001 .

[18]  Keith E. O’Hara,et al.  Characterization of nanostructured metal films by picosecond acoustics and interferometry , 2001 .

[19]  Werner J. Blau,et al.  Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films , 2002 .

[20]  A. Majumdar,et al.  Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures , 2002 .

[21]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[22]  Angel Rubio,et al.  Single‐Walled Carbon Nanotube–Polymer Composites: Strength and Weakness , 2000 .

[23]  Carter Kittrell,et al.  Assignment of (n, m) Raman and Optical Features of Metallic Single-Walled Carbon Nanotubes , 2003 .

[24]  Michael J. Bronikowski,et al.  Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study , 2001 .

[25]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[26]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[27]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.