A Behavioral Switch: cGMP and PKC Signaling in Olfactory Neurons Reverses Odor Preference in C. elegans

[1]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[2]  H. Lipkin Where is the ?c? , 1978 .

[3]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  S. Silberberg,et al.  Activation of protein kinase C augments evoked transmitter release , 1987, Nature.

[5]  Re Davis,et al.  Signaling properties of Ascaris motorneurons: graded active responses, graded synaptic transmission, and tonic transmitter release , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  L. Dekker,et al.  Mutagenesis of the regulatory domain of rat protein kinase C-eta. A molecular basis for restricted histone kinase activity. , 1993, The Journal of biological chemistry.

[7]  Cornelia I Bargmann,et al.  Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans , 1995, Neuron.

[8]  D. Garbers,et al.  Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide , 1995, Nature.

[9]  Cori Bargmann,et al.  Laser killing of cells in Caenorhabditis elegans. , 1995, Methods in cell biology.

[10]  C. Bourque,et al.  Atrial Natriuretic Peptide Modulates Synaptic Transmission from Osmoreceptor Afferents to the Supraoptic Nucleus , 1996, The Journal of Neuroscience.

[11]  Cori Bargmann,et al.  odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl , 1996, Cell.

[12]  Richard H. Kramer,et al.  Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide , 1997, Nature.

[13]  S. Yu,et al.  The Cloning of a Caenorhabditis Elegans Guanylyl Cyclase and the Construction of a Ligand-sensitive Mammalian/Nematode Chimeric Receptor* , 1997, The Journal of Biological Chemistry.

[14]  Cornelia I Bargmann,et al.  Reprogramming Chemotaxis Responses: Sensory Neurons Define Olfactory Preferences in C. elegans , 1997, Cell.

[15]  H. S. Kim,et al.  Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[16]  S. Mccann,et al.  Atrial natriuretic peptide in brain and pituitary gland. , 1997, Physiological reviews.

[17]  Nils Brose,et al.  Munc13-1 Is a Presynaptic Phorbol Ester Receptor that Enhances Neurotransmitter Release , 1998, Neuron.

[18]  J. Kaplan,et al.  Serotonin Inhibition of Synaptic Transmission Gαo Decreases the Abundance of UNC-13 at Release Sites , 1999, Neuron.

[19]  Cori Bargmann,et al.  Lateral Signaling Mediated by Axon Contact and Calcium Entry Regulates Asymmetric Odorant Receptor Expression in C. elegans , 1999, Cell.

[20]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[21]  J. Kaplan,et al.  Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. , 1999, Neuron.

[22]  J. Thomas,et al.  A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. , 2000, Genetics.

[23]  Cornelia I. Bargmann,et al.  Olfaction and Odor Discrimination Are Mediated by the C. elegans Guanylyl Cyclase ODR-1 , 2000, Neuron.

[24]  J. Thomas,et al.  egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues. , 2000, Genetics.

[25]  D. Paterson,et al.  Natriuretic peptides like NO facilitate cardiac vagal neurotransmission and bradycardia via a cGMP pathway. , 2001, American journal of physiology. Heart and circulatory physiology.

[26]  A. Hart,et al.  Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Cori Bargmann,et al.  C. elegans odour discrimination requires asymmetric diversity in olfactory neurons , 2001, Nature.

[28]  Cori Bargmann,et al.  The CaMKII UNC-43 Activates the MAPKKK NSY-1 to Execute a Lateral Signaling Decision Required for Asymmetric Olfactory Neuron Fates , 2001, Cell.

[29]  Cori Bargmann,et al.  The Cyclic GMP-Dependent Protein Kinase EGL-4 Regulates Olfactory Adaptation in C. elegans , 2002, Neuron.

[30]  P. Sengupta,et al.  Regulation of Body Size and Behavioral State of C. elegans by Sensory Perception and the EGL-4 cGMP-Dependent Protein Kinase , 2002, Neuron.

[31]  O. Hobert,et al.  Left–right asymmetry in the nervous system: the Caenorhabditis elegans model , 2002, Nature Reviews Neuroscience.

[32]  Cori Bargmann,et al.  Combinatorial Expression of TRPV Channel Proteins Defines Their Sensory Functions and Subcellular Localization in C. elegans Neurons , 2002, Neuron.

[33]  Cori Bargmann,et al.  Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. , 2003, Developmental cell.

[34]  J. Isaacson,et al.  Presynaptic Cyclic Nucleotide-Gated Ion Channels Modulate Neurotransmission in the Mammalian Olfactory Bulb , 2003, Neuron.

[35]  N. Ryba,et al.  The Receptors for Mammalian Sweet and Umami Taste , 2003, Cell.

[36]  Y. Ohshima,et al.  The C. elegans ceh-36 gene encodes a putative homemodomain transcription factor involved in chemosensory functions of ASE and AWC neurons. , 2004, Journal of molecular biology.

[37]  H. Amrein,et al.  Taste Perception and Coding in Drosophila , 2004, Current Biology.

[38]  Kristin Scott,et al.  Taste Representations in the Drosophila Brain , 2004, Cell.

[39]  R. Hammer,et al.  Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Koutarou D. Kimura,et al.  Genetic Control of Temperature Preference in the Nematode Caenorhabditis elegans , 2005, Genetics.

[41]  M. Barbado,et al.  Heterogeneous targeting of centrifugal inputs to the glomerular layer of the main olfactory bulb , 2005, Journal of Chemical Neuroanatomy.

[42]  T. Tsuji,et al.  A Loss-of-Function Mutation in Natriuretic Peptide Receptor 2 (Npr2) Gene Is Responsible for Disproportionate Dwarfism in cn/cn Mouse* , 2005, Journal of Biological Chemistry.

[43]  N. Ryba,et al.  The receptors and coding logic for bitter taste , 2005, Nature.

[44]  Koutarou D. Kimura,et al.  Diverse regulation of sensory signaling by C. elegans nPKC‐epsilon/eta TTX‐4 , 2005, The EMBO journal.

[45]  D. Fitzpatrick,et al.  Multiple lineage specific expansions within the guanylyl cyclase gene family , 2006, BMC Evolutionary Biology.

[46]  James H. Thomas,et al.  The putative chemoreceptor families of C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[47]  S. Lockery,et al.  Searching for Neuronal Left/Right Asymmetry: Genomewide Analysis of Nematode Receptor-Type Guanylyl Cyclases , 2006, Genetics.

[48]  Yuichi Iino,et al.  Goalpha regulates olfactory adaptation by antagonizing Gqalpha-DAG signaling in Caenorhabditis elegans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  W. Schafer,et al.  The Insulin/PI 3-Kinase Pathway Regulates Salt Chemotaxis Learning in Caenorhabditis elegans , 2006, Neuron.

[50]  M. Kazanietz,et al.  C1 domains exposed: from diacylglycerol binding to protein-protein interactions. , 2006, Biochimica et biophysica acta.

[51]  Guy Salama,et al.  Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Suzanne Rademakers,et al.  Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans , 2006, The EMBO journal.

[53]  Yuichi Iino,et al.  Goα regulates olfactory adaptation by antagonizing Gqα-DAG signaling in Caenorhabditis elegans , 2006 .

[54]  Cori Bargmann Chemosensation in C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[55]  Damon A. Clark,et al.  A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans , 2006, Nature Neuroscience.

[56]  Kristin Scott,et al.  Imaging Taste Responses in the Fly Brain Reveals a Functional Map of Taste Category and Behavior , 2006, Neuron.

[57]  Yong-Chun Yu,et al.  Modulation by Brain Natriuretic Peptide of GABA Receptors on Rat Retinal ON-Type Bipolar Cells , 2006, The Journal of Neuroscience.

[58]  D. Dickey,et al.  Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. , 2006, Endocrine reviews.

[59]  Sreekanth H. Chalasani,et al.  Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans , 2007, Nature.

[60]  Cori Bargmann,et al.  An Innexin-Dependent Cell Network Establishes Left-Right Neuronal Asymmetry in C. elegans , 2007, Cell.

[61]  Takeshi Ishihara,et al.  Caenorhabditis elegans Integrates the Signals of Butanone and Food to Enhance Chemotaxis to Butanone , 2007, The Journal of Neuroscience.

[62]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[63]  1David B. Morton Invertebrates yield a plethora of atypical guanylyl cyclases , 2004, Molecular Neurobiology.

[64]  J. Kaplan,et al.  PKC-1 regulates secretion of neuropeptides , 2007, Nature Neuroscience.

[65]  Aravinthan D. T. Samuel,et al.  Olfactory behavior of swimming C. elegans analyzed by measuring motile responses to temporal variations of odorants. , 2008, Journal of Neurophysiology.

[66]  S. Lockery,et al.  Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis , 2008, Nature.

[67]  Daniel Ramot,et al.  The Parallel Worm Tracker: A Platform for Measuring Average Speed and Drug-Induced Paralysis in Nematodes , 2008, PloS one.