HIGH-RESOLUTION EXPANDED VERY LARGE ARRAY IMAGE OF DIMETHYL ETHER (CH3)2O IN ORION–KL

We report the first subarcsecond (065 × 051) image of the dimethyl ether molecule, (CH3)2O, toward the Orion Kleinmann-Low nebula. The observations were carried at 43.4 GHz with the Expanded Very Large Array (EVLA). The distribution of the lower energy transition 61, 5-60, 6, EE (E u = 21 K) mapped in this study is in excellent agreement with the published dimethyl ether emission maps imaged with a lower resolution. The main emission peaks are observed toward the Compact Ridge and Hot Core southwest components, at the northern parts of the Compact Ridge and in an intermediate position between the Compact Ridge and the Hot Core. A notable result is that the distribution of dimethyl ether is very similar to that of another important larger O-bearing species, the methyl formate (HCOOCH3), imaged at a lower resolution. Our study shows that higher spectral resolution (WIDAR correlator) and increased spectral coverage provided by the EVLA offer new possibilities for imaging complex molecular species. The sensitivity improvement and the other EVLA improvements make this instrument well suited for high sensitivity, high angular resolution, and molecular line imaging.

[1]  B. J. Butler,et al.  THE EXPANDED VERY LARGE ARRAY: A NEW TELESCOPE FOR NEW SCIENCE , 2011, 1106.0532.

[2]  K. Menten,et al.  Imaging the Ionized Disk of the High-Mass Protostar Orion I , 2007, 0704.2309.

[3]  Dynamical Decay of a Massive Multiple System in Orion KL , 2005, astro-ph/0509201.

[4]  S. Roca-F brega,et al.  Revista Mexicana de Astronomia y Astrofisica Conference Series , 2011 .

[5]  M. Harwit,et al.  Large-scale 13CO J = 5 → 4 and [C I] Mapping of Orion A , 2000 .

[6]  L. Mundy,et al.  Subarcsecond-Resolution 86 GHz Continuum Maps of Orion KL , 1995 .

[7]  D. Gezari,et al.  Mid-Infrared Imaging of Orion BN/KL. II. Luminosity Sources, Extinction Distribution, and the Nature of IRc2 , 1998 .

[8]  K. Menten,et al.  Monitoring the Large Proper Motions of Radio Sources in the Orion BN/KL Region , 2008, 0805.3650.

[9]  M. Felli,et al.  Solar system-sized condensations in the Orion Nebula , 1987 .

[10]  L. Greenhill,et al.  A 42.3–43.6 GHz SPECTRAL SURVEY OF ORION BN/KL: FIRST DETECTION OF THE v = 0 J = 1–0 LINE FROM THE ISOTOPOLOGUES 29SiO AND 30SiO , 2008, 0810.1140.

[11]  J. Bally,et al.  EXPLOSIVE OUTFLOWS POWERED BY THE DECAY OF NON-HIERARCHICAL MULTIPLE SYSTEMS OF MASSIVE STARS: ORION BN/KL , 2010, 1011.5512.

[12]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[13]  T. Millar,et al.  A Three-Position Spectral Line Survey of Sagittarius B2 between 218 and 263 GHz. II. Data Analysis , 2000 .

[14]  P. Ehrenfreund,et al.  Astrochemistry of dimethyl ether , 2006 .

[15]  L. Snyder,et al.  High-Resolution λ = 1 mm CARMA Observations of Large Molecules in Orion-KL , 2007, 0709.3232.

[16]  R. Garrod,et al.  Complex Chemistry in Star-forming Regions: An Expanded Gas-Grain Warm-up Chemical Model , 2008, 0803.1214.

[17]  B. Turner A Molecular Line Survey of Sagittarius B2 and Orion--KL from 70 to 115 GHz. II. Analysis of the Data , 1991 .

[18]  M. Hayashi,et al.  Molecular Cloud Cores in the Orion A Cloud. I. Nobeyama CS (1--0) Survey , 1993 .

[19]  K. Johnston,et al.  Kinematics, Kinetic Temperatures, and Column Densities of NH3 in the Orion Hot Core , 2000 .

[20]  M. Wright,et al.  A Multiline Aperture Synthesis Study of Orion-KL , 1996 .

[21]  G. Neugebauer,et al.  Observations of an infrared star in the Orion nebula. , 1967 .

[22]  J. Peek,et al.  A Parallactic Distance of 389-21+24 Parsecs to the Orion Nebula Cluster from Very Long Baseline Array Observations , 2007, 0706.2361.

[23]  S. Ridgway,et al.  Near-infrared imaging of the Becklin-Neugebauer-IRc2 region in Orion with subarcsecond resolution , 1993 .

[24]  W. Danchi,et al.  The distribution of molecules in the core of OMC-1 , 1995 .

[25]  Compact continuum radio sources in the Orion Nebula , 1987 .

[26]  K. Menten,et al.  What is Powering the Orion Kleinmann-Low Infrared Nebula? , 1995 .

[27]  K. Menten,et al.  EXPLOSIVE DISINTEGRATION OF A MASSIVE YOUNG STELLAR SYSTEM IN ORION , 2009, 0907.3945.

[28]  E. Herbst,et al.  Dimethyl Ether: Laboratory Assignments and Predictions through 600 GHz , 1998 .

[29]  S. Sakai,et al.  Distance to Orion KL Measured with VERA , 2007, 0705.3792.

[30]  C. Chandler,et al.  VLA observations of 43-GHz continuum and CS J= 1-0 emission from Orion-IRc2 and the hot core , 1997 .

[31]  M. Reid,et al.  Line Imaging of Orion KL at 865 μm with the Submillimeter Array , 2005, astro-ph/0506603.

[32]  K. Menten,et al.  The distance to the Orion Nebula , 2007, 0709.0485.

[33]  L. Greenhill,et al.  A MULTI-EPOCH STUDY OF THE RADIO CONTINUUM EMISSION OF ORION SOURCE. I. CONSTRAINTS ON THE DISK EVOLUTION OF A MASSIVE YSO AND THE DYNAMICAL HISTORY OF ORION BN/KL , 2010, 1011.3799.

[34]  J. Cernicharo,et al.  Unveiling the chemistry of hot protostellar cores with ALMA , 2008 .

[35]  D. Mouillet,et al.  VLT/NACO infrared adaptive optics images of small scale structures in OMC1 ⋆ , 2003, astro-ph/0312087.

[36]  L. Mundy,et al.  A λ = 1.3 Millimeter Aperture Synthesis Molecular Line Survey of Orion Kleinmann-Low , 1996 .