Interpreting Lithium Batteries Discharge Curves for Easy Identification of the Origin of Performance Limitations

A simple method is proposed to interpret limited discharge performances of composite positive electrodes in terms of charge transport in the electrolyte vs. charge transport in the active material.

[1]  Takao Inoue,et al.  Effect of Electrode Parameters on LiFePO4 Cathodes , 2006 .

[2]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[3]  Y. Orikasa,et al.  Direct observation of a metastable crystal phase of Li(x)FePO4 under electrochemical phase transition. , 2013, Journal of the American Chemical Society.

[4]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[5]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[6]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[7]  Rahul Malik,et al.  A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes , 2013 .

[8]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .

[9]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[10]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[11]  M. Gaberšček Towards optimized preparation of cathode materials: How can modeling and concepts be used in practice , 2009 .

[12]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[13]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[14]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[15]  Guoxian Liang,et al.  A soft chemistry approach to coating of LiFePO4 with a conducting polymer. , 2011, Angewandte Chemie.

[16]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[17]  Karim Zaghib,et al.  Understanding Rate-Limiting Mechanisms in LiFePO4 Cathodes for Li-Ion Batteries , 2011 .

[18]  G. Liang,et al.  Delithiation kinetics study of carbon coated and carbon free LiFePO4 , 2014 .

[19]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[20]  Ann Marie Sastry,et al.  Porous cathode optimization for lithium cells: Ionic and electronic conductivity, capacity, and selection of materials , 2010 .

[21]  W. Shyy,et al.  Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance , 2010 .

[22]  Karena W. Chapman,et al.  Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes , 2014, Science.

[23]  Chong Seung Yoon,et al.  Enhanced electrochemical performance of carbon–LiMn1−xFexPO4 nanocomposite cathode for lithium-ion batteries , 2011 .

[24]  D. Guyomard,et al.  Ionic vs Electronic Power Limitations and Analysis of the Fraction of Wired Grains in LiFePO4 Composite Electrodes , 2010 .

[25]  John R. Owen,et al.  How the electrolyte limits fast discharge in nanostructured batteries and supercapacitors , 2009 .

[26]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[27]  Xiaofeng Qian,et al.  In situ observation of random solid solution zone in LiFePO₄ electrode. , 2014, Nano letters.

[28]  Y. Chiang,et al.  Modeling the competing phase transition pathways in nanoscale olivine electrodes , 2010 .

[29]  Kwang Man Kim,et al.  Electrochemical performance of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 modified by carbons as cathode materials , 2011 .

[30]  Ralph E. White,et al.  Mathematical modeling of secondary lithium batteries , 2000 .

[31]  Robert Dominko,et al.  Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes , 2007 .

[32]  M. Doyle,et al.  Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process , 1997 .