Auto-contouring via automatic anatomy recognition of organs at risk in head and neck cancer on CT images

Contouring of the organs at risk is a vital part of routine radiation therapy planning. For the head and neck (H and N) region, this is more challenging due to the complexity of anatomy, the presence of streak artifacts, and the variations of object appearance. In this paper, we describe the latest advances in our Automatic Anatomy Recognition (AAR) approach, which aims to automatically contour multiple objects in the head and neck region on planning CT images. Our method has three major steps: model building, object recognition, and object delineation. First, the better-quality images from our cohort of H and N CT studies are used to build fuzzy models and find the optimal hierarchy for arranging objects based on the relationship between objects. Then, the object recognition step exploits the rich prior anatomic information encoded in the hierarchy to derive the location and pose for each object, which leads to generalizable and robust methods and mitigation of object localization challenges. Finally, the delineation algorithms employ local features to contour the boundary based on object recognition results. We make several improvements within the AAR framework, including finding recognition-error-driven optimal hierarchy, modeling boundary relationships, combining texture and intensity, and evaluating object quality. Experiments were conducted on the largest ensemble of clinical data sets reported to date, including 216 planning CT studies and over 2,600 object samples. The preliminary results show that on data sets with minimal (<4 slices) streak artifacts and other deviations, overall recognition accuracy reaches 2 voxels, with overall delineation Dice coefficient close to 0.8 and Hausdorff Distance within 1 voxel.

[1]  R. Steenbakkers,et al.  CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. , 2015, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[2]  Albert K. Hoang Duc,et al.  Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer. , 2015, Medical physics.

[3]  Jayaram K. Udupa,et al.  Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images , 2014, Medical Image Anal..

[4]  Jayaram K. Udupa,et al.  Fuzzy Connectedness Image Segmentation in Graph Cut Formulation: A Linear-Time Algorithm and a Comparative Analysis , 2012, Journal of Mathematical Imaging and Vision.

[5]  Nicholas Slevin,et al.  Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk , 2014, Radiation oncology.

[6]  Paolo Zaffino,et al.  Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours. , 2014, Medical physics.

[7]  Jayaram K. Udupa,et al.  Image quality and segmentation , 2018, Medical Imaging.

[8]  Jayaram K. Udupa,et al.  Hierarchical model-based object localization for auto-contouring in head and neck radiation therapy planning , 2018, Medical Imaging.

[9]  Ying Sun,et al.  Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: A multi-institution clinical study. , 2015, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[10]  Bulat Ibragimov,et al.  Segmentation of organs‐at‐risks in head and neck CT images using convolutional neural networks , 2017, Medical physics.

[11]  Maarten L P Dirkx,et al.  Does atlas-based autosegmentation of neck levels require subsequent manual contour editing to avoid risk of severe target underdosage? A dosimetric analysis. , 2011, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[12]  Xiao Han,et al.  Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. , 2011, International journal of radiation oncology, biology, physics.