The austral biflagellate Chloromonas rubroleosa (Chlorophyceae) is the closest relative of the unusual quadriflagellate genus Chlainomonas, both found in snow

The quadriflagellate genus Chlainomonas frequently dominates red snow globally. It is unusual in several respects, with two separated pairs of flagella, apparent cell division via extrusion of cytoplasmic threads, and being nested phylogenetically within the biflagellate genus Chloromonas. Here, we showed that the austral species Chloromonas (Cr.) rubroleosa, originally described from Antarctic red snow, is a close biflagellate relative of Chlainomonas, challenging the monophyly of Chlainomonas as currently conceived. Sequences of the 18S rRNA gene robustly linked Cr. rubroleosa with near‐identical environmental sequences from Antarctic red snow and Chlainomonas from North America, Japan, and Europe. Furthermore, the 18S rRNA and rbcL gene sequences of Cr. rubroleosa were almost identical to New Zealand and North American collections of Chlainomonas. Cr. rubroleosa and New Zealand Chlainomonas are separated by only a single‐base substitution across the ITS1‐5.8S‐ITS2 rRNA loci (and according to ITS2, the North American collection is the next closest relative). This again raises the possibility that Chlainomonas is a life‐cycle stage of vegetatively biflagellate organisms, although this remains confounded by the scarcity of biflagellates in field populations, the apparent cell division by quadriflagellates, and the absence of Chlainomonas‐type cells in cultures of Cr. rubroleosa. The latter species is broadly similar to Chlainomonas, being poor at swimming, with similar pigment, chloroplast arrangement and ultrastructure, and is relatively large. Increased size is a feature of the wider clade of “Group D” snow algae. A synthesis of field and laboratory investigations may be needed to unravel the life cycle and correct the systematics of this group.

[1]  T. Segawa,et al.  Spatial and Temporal Variations in Pigment and Species Compositions of Snow Algae on Mt. Tateyama in Toyama Prefecture, Japan , 2021, Frontiers in Plant Science.

[2]  Avery E. Tucker,et al.  Distribution and biogeography of Sanguina snow algae: Fine‐scale sequence analyses reveal previously unknown population structure , 2020, Ecology and evolution.

[3]  W. Luo,et al.  Molecular diversity of the microbial community in coloured snow from the Fildes Peninsula (King George Island, Maritime Antarctica) , 2020, Polar Biology.

[4]  R. W. Hoham,et al.  Snow and Glacial Algae: A Review1 , 2019, Journal of phycology.

[5]  Bruce A Shapiro,et al.  RNA2Drawer: geometrically strict drawing of nucleic acid structures with graphical structure editing and highlighting of complementary subsequences , 2019, RNA biology.

[6]  L. Nedbalová,et al.  Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow , 2019, FEMS microbiology ecology.

[7]  M. Kawachi,et al.  Taxonomic re-examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. nov. , 2019, PloS one.

[8]  F. Navarro,et al.  Bipolar dispersal of red-snow algae , 2018, Nature Communications.

[9]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[10]  A. Holzinger,et al.  Ecophysiological and morphological comparison of two populations of Chlainomonas sp. (Chlorophyta) causing red snow on ice-covered lakes in the High Tatras and Austrian Alps , 2018, European journal of phycology.

[11]  M. Kawachi,et al.  Taxonomic revision of Chloromonas nivalis (Volvocales, Chlorophyceae) strains, with the new description of two snow-inhabiting Chloromonas species , 2018, PloS one.

[12]  Hing-Fung Ting,et al.  MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. , 2016, Methods.

[13]  A. Holzinger,et al.  Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow , 2016, FEMS microbiology ecology.

[14]  Hiroko Kawai-Toyooka,et al.  Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae) , 2015 .

[15]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[16]  J. Lukavský,et al.  Cryoseston of the Pirin Mountains, Bulgaria , 2013 .

[17]  M. Melkonian,et al.  A consensus secondary structure of ITS2 in the chlorophyta identified by phylogenetic reconstruction. , 2013, Protist.

[18]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[19]  D. Gifford,et al.  Control of Transcription by Cell Size , 2010, PLoS biology.

[20]  U. Karsten,et al.  Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation , 2010, Protoplasma.

[21]  H. Nozaki,et al.  Re-examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al., comb. nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material , 2010 .

[22]  A. Coleman Is there a molecular key to the level of "biological species" in eukaryotes? A DNA guide. , 2009, Molecular phylogenetics and evolution.

[23]  T. Friedl,et al.  NEW STREPTOPHYTE GREEN ALGAE FROM TERRESTRIAL HABITATS AND AN ASSESSMENT OF THE GENUS INTERFILUM (KLEBSORMIDIOPHYCEAE, STREPTOPHYTA) 1 , 2008, Journal of phycology.

[24]  T. Beer,et al.  TWO SNOW SPECIES OF THE QUADRIFLAGELLATE GREEN ALGA CHLAINOMONAS (CHLOROPHYTA, VOLVOCALES): ULTRASTRUCTURE AND PHYLOGENETIC POSITION WITHIN THE CHLOROMONAS CLADE 1 , 2008, Journal of phycology.

[25]  Alexandros Stamatakis,et al.  Exploring New Search Algorithms and Hardware for Phylogenetics: RAxML Meets the IBM Cell , 2007, J. VLSI Signal Process..

[26]  Annette W. Coleman,et al.  Pan-eukaryote ITS2 homologies revealed by RNA secondary structure , 2007, Nucleic acids research.

[27]  H. Rogers,et al.  Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development , 2006 .

[28]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[29]  P. Novis New records of snow algae for New Zealand, from Mt Philistine, Arthur's Pass National Park , 2002 .

[30]  P. Novis Ecology of the snow alga Chlainomonas kolii (Chlamydomonadales, Chlorophyta) in New Zealand , 2002 .

[31]  M. Melkonian,et al.  Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and Lobochlamys gen. nov. , 2001, Protist.

[32]  P. Novis Ecology and taxonomy of alpine algae, Mt. Philistine, Arthur's Pass National Park, New Zealand , 2001 .

[33]  Helmut Hillebrand,et al.  BIOVOLUME CALCULATION FOR PELAGIC AND BENTHIC MICROALGAE , 1999 .

[34]  T. Friedl Evolution of the polyphyletic genus Pleurastrum (Chlorophyta): inferences from nuclear-encoded ribosomal DNA sequences and motile cell ultrastructure , 1996 .

[35]  T. Kuroiwa,et al.  PHYLOGENETIC RELATIONSHIPS WITHIN THE COLONIAL VOLVOCALES (CHLOROPHYTA) INFERRED FROM rbcL GENE SEQUENCE DATA , 1995 .

[36]  S. Suda,et al.  Life cycle of Pseudocarteria mucosa (Korschikov) Ettl (Volvocales, Chlorophyta) , 1995 .

[37]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[38]  B. John ALTERNATION OF GENERATIONS IN ALGAE: ITS COMPLEXITY, MAINTENANCE AND EVOLUTION , 1994 .

[39]  H. Nozaki Aplanogamous sexual reproduction in Carteria eugametos (Volvocales, Chlorophyta) , 1994 .

[40]  H. U. Ling,et al.  Snow algae of the Windmill Islands, continental Antarctica. 2. Chloromonas rubroleosa sp. nov. (Volvocales, Chlorophyta), an alga of red snow , 1993 .

[41]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[42]  R. W. Hoham,et al.  The life history and ecology of the snow alga Chloromonas polyptera comb. nov. (Chlorophyta, Volvocales) , 1983 .

[43]  R. W. Hoham,et al.  Distribution of cryophilic algae in an arid region, the American Southwest* , 1979 .

[44]  R. W. Hoham,et al.  The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales) , 1979 .

[45]  R. W. Hoham,et al.  Chloromonas nivalis (Chod.) Hoh. & Mull. comb. nov., and additional comments on the snow alga, Scotiella , 1978 .

[46]  R. W. Hoham,et al.  The life history and ecology of the snow alga Chloromonas pichinchae (Chlorophyta, Volvocales) , 1975 .

[47]  Ronald W. Hoham,et al.  CHLAINOMONAS KOLII(HARDY ET CURL) COMB. NOV. (CHLOROPHYTA, VOLVOCALES), A REVISION OF THE SNOW ALGA, TRACHELOMONAS KOLII HARDY ET CURL (EUGLENOPHYTA, EUGLENALES) 1, 2 , 1974 .

[48]  H. Ettl Die Gattung Chloromonas Gobi Emend. Wille , 1970 .

[49]  J. Stein,et al.  RED SNOW FROM MT. SEYMOUR, BRITISH COLUMBIA , 1964 .